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RESUMO

Este trabalho tem como objetivo aplicar os conceitos dos Problemas de Corte e Em-
pacotamento e de Pesquisa Operacional para otimizar o processo de montagem do Plano
de Impressão e Corte em uma pequena gráfica familiar localizada na cidade de São Paulo.
A empresa não possui tecnologia para auxiliá-la na montagem do Plano, o que torna a
tarefa complexa devido à ampla gama de papéis dispońıveis, grande volume de pedidos
únicos e prazo curto de execução. O trabalho visa explorar modelos para Problemas de
Corte Bidimensional Guilhotinado já desenvolvidos em trabalhos publicados e estendê-
los para a realidade da empresa, implementando duas inovações em relação aos modelos
originais: a possibilidade de rotação dos itens e um critério de desempate das soluções
ótimas visando maior eficiência operacional e redução do desperd́ıcio de papel. O princi-
pal objetivo do trabalho é propor uma solução capaz de gerar os Planos de Impressão e
Corte de forma automática, priorizando a solução com o menor custo. A linguagem de
programação usada para implementar os modelos matemáticos é o Python, com o Gurobi
sendo o resolvedor de propósito geral. Por fim, realiza-se uma análise comparativa entre
soluções adotadas pela gráfica na prática com as soluções encontradas pelos modelos, evi-
denciando as oportunidades de melhorias da operação atual e fornecendo recomendações
práticas para a empresa.

Palavras-Chave – Pesquisa Operacional, Corte e Empacotamento, Corte Guilhotinado,
Plano de Impressão e Corte.



ABSTRACT

This work aims to apply the concepts of Cutting and Packing Problems and Opera-
tions Research to optimize the process of assembling the Printing and Cutting Plan in a
small family-owned printing company located in São Paulo, Brazil. The company lacks
technology to assist it in the plan assembly, making the task complex due to the wide
range of available paper types, the high volume of unique orders, and the tight deadlines.
The goal of this work is to explore existing two-dimensional guillotine cutting problem
models from published research and extend them to the company’s reality by implemen-
ting two innovations compared to the original models: the possibility of item rotation
and a tie-breaking criterion for optimal solutions to enhance operational efficiency and
reduce paper waste. The main objective of the work is to propose a solution capable of
generating Printing and Cutting Plans automatically, prioritizing the solution with the
lowest cost. Python is the programming language used to implement the mathematical
models, with Gurobi as the general-purpose solver. Finally, a comparative analysis is
carried out between the solutions adopted by the printing company in practice and the
solutions provided by the models, highlighting opportunities for improving the current
operation and providing practical recommendations for the company.

Keywords – Operations Research, Cutting and Packing, Guillotine Cutting, Printing
and Cutting Plan.
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21 Estrutura do Caṕıtulo 3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
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4 Notação dos modelos matemáticos . . . . . . . . . . . . . . . . . . . . . . . 62

5 Instâncias utilizadas nos testes computacionais. . . . . . . . . . . . . . . . 70
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1 INTRODUÇÃO

A indústria de impressão tem passado por diversas transformações nos últimos anos.

As tecnologias presentes no setor evolúıram de forma significativa devido à crescente de-

manda dos clientes por produtos personalizados e de alta qualidade, representando a

criação de novas máquinas, processos e opções para o consumidor. Outra caracteŕıstica

observada é que, com o avanço das plataformas digitais, a indústria tem notado uma mu-

dança nos padrões dos pedidos, com redução no volume de impressões e prazos de entrega

mais curtos, além da maior variedade de materiais dispońıveis (MOSTAJABDAVEH et

al., 2022).

Em uma indústria que é fortemente dependente da experiência do cliente, atender às

suas necessidades no tempo desejado é um fator fundamental para garantir a fidelização da

base de consumidores. Por isso, essas transformações impactam diretamente na tomada

de decisões das empresas, especialmente no planejamento e na execução dos pedidos. Do

ponto de vista das empresas, as escolhas definem a margem de lucro do produto, as etapas

necessárias no processo e a garantia de que as especificações solicitadas serão atendidas.

Dessa forma, tanto as gráficas (que serão o foco deste trabalho) como as empresas que

trabalham com comunicação visual passaram a enfrentar um desafio que tornou-se mais

complexo: a preparação do Plano de Impressão e Corte das ordens de serviço, que são

as duas principais atividades para a entrega de um pedido. As decisões no momento da

montagem do Plano interferem diretamente em diversos aspectos da cadeia produtiva.

O primeiro fator afetado é a matéria prima. Com a amplificação da oferta de produtos

personalizados, diversos materiais estão à disposição do cliente e das empresas: tipos de

papéis variados (p.e., couché, offset, pólen, fotográfico, etc.); tamanhos de papel variados

(A3, A4, formato 6, formato 9, etc.); e gramaturas variadas (75 g, 90 g, 120 g, 170

g, etc.). Logo, o primeiro grande desafio é conciliar as diversas combinações posśıveis

de opções dentro da operação da empresa para executar os múltiplos pedidos conforme

as especificações solicitadas, garantindo a disponibilidade dos materiais e assegurando o

atendimento da demanda dos clientes corretamente.
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Outro fator afetado é o processo. Como dito anteriormente, o alto grau de persona-

lização combinado com o aumento das opções dispońıveis resulta em um baixo ńıvel de

padronização dos pedidos. Logo, cada pedido é único em termos de dimensões, quantida-

des e especificações. O principal desafio, portanto, é garantir que o produto seja entregue

no prazo, mantendo a eficiência operacional e as especificações desejadas. Ou seja, deve-se

assegurar a execução do prazo combinado com o cliente, respeitando fatores como o tempo

gasto para a montagem do Plano (que varia a cada pedido), as regras de corte necessárias

e a utilização de diversos materiais (com tamanhos variados) durante todo o processo.

O último fator afetado é o custo da ordem de serviço. A cada pedido impresso uma

certa quantidade de folhas é utilizada, dependendo da configuração final do Plano de

Impressão e Corte. Do ponto de vista das empresas do setor é essencial buscar a redução

desse custo, devido à alta competitividade no setor que é muito senśıvel ao preço.

Para ilustrar, a Figura 1 a seguir é uma representação de um Plano de Impressão

e Corte para uma gráfica. Os itens à esquerda simulam um pedido que uma gráfica

recebeu, ou seja, um conjunto de arquivos solicitados pelos clientes para impressão, com

suas respectivas dimensões. A imagem à direita representa o Plano já montado com todos

os arquivos. Logo, nota-se que o objetivo é alocar os arquivos dentro de uma ou mais

folhas padronizadas, da forma mais eficiente e econômica posśıvel. A região em branco

representa a sobra, que é a área não utilizada das folhas. Ela pode ser reaproveitada ou

caracterizada como perda dependendo do tamanho/formato, e também da operação da

empresa.

Figura 1: Plano de Impressão e Corte.

Fonte: o Autor.
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Considerando o exemplo do Plano apresentado anteriormente, percebe-se que a mon-

tagem não é uma tarefa trivial, pois exige a definição do tamanho e da quantidade de

folhas a serem utilizadas, bem como o posicionamento das figuras e sua orientação. Além

disso, pensando no contexto das gráficas, a ampla gama de papéis dispońıveis (com ta-

manhos variados), o grande volume de pedidos com especificações únicas e o prazo curto

de execução evidenciam a grande complexidade de montar os Planos na operação diária

de uma gráfica.

Desta maneira, percebe-se que há uma grande oportunidade no setor para aplicar

abordagens de otimização que auxiliem no processo de tomada de decisões, especialmente

na montagem dos Planos de Impressão e Corte.

1.1 Motivações, Objetivos e Contribuições

O objeto de estudo deste trabalho é uma pequena gráfica familiar localizada na zona

sul da cidade de São Paulo, que atualmente não possui nenhum tipo de tecnologia capaz

de auxiliá-la na montagem dos Planos de Impressão e Corte. Portanto, o esperado é que

a aplicação das soluções propostas neste trabalho seja capaz de apoiar as decisões da

empresa, visando a redução dos custos com materiais em relação à situação atual. Uma

comparação será feita entre os dois momentos da produção (pré e pós implementação da

solução) para o mesmo conjunto de instâncias, evidenciando os custos e comparando as

soluções propostas com as soluções anteriormente adotadas na prática.

Entende-se que a aplicação de conceitos de Pesquisa Operacional, em especial o tópico

de otimização aplicada na classe de Problemas de Corte e Empacotamento é uma pro-

posta adequada para auxiliar a produção da empresa. Como base de conhecimento para

pesquisas e desenvolvimento do trabalho, segundo a tipologia de Problemas de Corte e

Empacotamento apresentada em WÄSCHER et al. (2007), o problema enquadra-se como

um Multiple Bin Size Bin Packing Problem. Alguns trabalhos relevantes que abordam

este problema podem ser encontrados em GILMORE e GOMORY (1965), LODI et al.

(2002a), LODI e MONACI (2003), LODI et al. (2004), ABRANTES (2012) e NASCI-

MENTO (2022).

Para alcançar o objetivo de redução de custos, o presente trabalho visa explorar

alguns modelos de otimização já desenvolvidos em trabalhos publicados e estendê-los

para a realidade da empresa estudada, considerando as especificidades do seu processo

produtivo.
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Por fim, a implementação dos modelos é realizada em Python, utilizando o Gurobi

como o resolvedor de propósito geral. Além disso, a biblioteca Matplotlib é empregada

para a geração visual das representações gráficas dos Planos obtidos. O ambiente de de-

senvolvimento escolhido é o Jupyter Notebook, que proporciona ao usuário a capacidade de

inserir dados, incluindo as especificações das folhas dispońıveis (tamanho e quantidade),

bem como as especificações dos arquivos destinados à impressão (tamanho e quantidade).

Esse arquivo gera imagens das soluções encontradas pelo modelo, permitindo a visua-

lização do Plano de Impressão e Corte recomendado.

De forma geral, o objetivo do presente trabalho é propor uma solução capaz de gerar

os Planos de Impressão e Corte de forma automática priorizando a solução com o menor

custo, resolvendo, portanto, a situação atual da empresa. Logo, os objetivos espećıficos

do trabalho podem ser elencados da seguinte forma:

1. Reduzir o custo total na produção dos pedidos por meio de algoritmos que sejam

capazes de identificar qual conjunto de objetos é o mais vantajoso financeiramente

para empacotar os itens pedidos, respeitando as condições impostas pela operação

da gráfica.

2. Mensurar e comparar os impactos financeiros entre as soluções adotadas na prática

pela gráfica e as soluções obtidas pelos modelos desenvolvidos, para o mesmo con-

junto de instâncias.

3. Desenvolver um arquivo que tem como output o resultado do Plano sugerido pe-

los modelos propostos de forma visual, indicando a disposição dos arquivos para

impressão dentro das folhas.

1.2 Estrutura do Trabalho

• Caṕıtulo 1: Introdução - contextualização do tema abordado; detalha-

mento dos objetivos, motivações, e contribuições; apresentação do que será

feito/implementado, e descrição da estrutura do trabalho.

• Caṕıtulo 2: Fundamentação Teórica - apresentação dos temas mais relevantes

relacionados ao problema abordado e representação gráfica dos principais conceitos.

• Caṕıtulo 3: Descrição do Problema - apresentação das caracteŕısticas do pro-

blema abordado, esquematizando o contexto da empresa, definindo o objetivo da
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modelagem, detalhando as variáveis importantes e estruturando as restrições do

processo.

• Caṕıtulo 4: Modelagem do Problema - declaração dos modelos desenvolvi-

dos, apresentando a notação utilizada, bem como as funções objetivo e restrições

modeladas.

• Caṕıtulo 5: Testes Computacionais e Análises - apresentação das instâncias,

testes computacionais e análises comparativas entre a solução adotada pela gráfica

na prática e os resultados obtidos dos modelos de otimização.

• Caṕıtulo 6: Conclusões e Perspectivas Futuras - considerações finais a res-

peito das principais contribuições do trabalho e discussão das perspectivas futuras

acerca da modelagem e da solução desenvolvida.
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2 FUNDAMENTAÇÃO TEÓRICA

O objetivo deste caṕıtulo é explorar os principais tópicos relacionados ao problema es-

tudado. Com isso, uma base de conhecimento será formada para garantir o entendimento

dos conceitos fundamentais sobre o tema e permitir o desenvolvimento do trabalho.

Primeiramente, é apresentada uma breve introdução sobre a Pesquisa Operacional.

Ela é seguida por um apronfudamento inicial sobre os Problemas de Corte e Empaco-

tamento, apresentando um estudo detalhado sobre a tipologia desses problemas com o

intuito de garantir as definições claras sobre o problema explorado, permitindo pesqui-

sas direcionadas dentro da área. Em seguida, uma série de conceitos relevantes acerca

dos problemas de corte bidimensional são apresentados, com o objetivo de formar uma

base sólida de conhecimento para modelar o problema da gráfica. Por fim, é feita uma ex-

ploração da vizinhança mais próxima do problema que este trabalho busca solucionar com

a especificação de suas principais caracteŕısticas, com o histórico de abordagens adotadas

e com as estratégias de resolução e algoritmos mais relevantes. A Figura 2 apresenta a

estruturação do caṕıtulo.

Figura 2: Estrutura do Caṕıtulo 2.

Fonte: o Autor.
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2.1 Pesquisa Operacional

A primeira aparição formal do termo Pesquisa Operacional foi na Segunda Guerra

Mundial, pelo exército britânico. O objetivo era decidir a melhor forma de distribuir os

recursos bélicos baseando-se em ciência, deixando de lado as opiniões pessoais (TAHA,

2017). Os avanços desse estudo na esfera militar foram, então, direcionados para aumentar

a produtividade e eficiência na esfera civil.

A área de Pesquisa Operacional, assim como no método cient́ıfico, é estruturada por

uma sequência de etapas que visa investigar e fornecer respostas sobre um problema (HIL-

LIER; LIEBERMAN, 2010). O primeiro passo é a análise e formulação desse problema,

que envolve a coleta de dados e o entendimento completo do contexto no qual ele está in-

serido. O próximo passo é a construção do modelo, que visa descrever o cenário estudado

em uma linguagem matemática. Posteriormente, é realizada uma sessão de validação do

modelo através de experimentos e, por fim, é realizado o refinamento do modelo. Caso

o problema estudado seja de otimização (como neste trabalho), todo esse processo tem

como objetivo encontrar a melhor solução (solução ótima) para o caso.

Ou seja, a área de Pesquisa Operacional pode ser entendida como um ramo da enge-

nharia (e da matemática) que visa fornecer uma base cient́ıfica para auxiliar a tomada

de decisões (MURTHY, 2007) através da estruturação do problema por meio de um mo-

delo. Especificamente sobre o modelo matemático, ele é composto por expressões (p.e.,

equações, inequações) que visam descrever com precisão o problema estudado. Ele possui

três principais componentes: a função objetivo, as variáveis de decisão e o conjunto de

restrições. A função objetivo pode ser de maximização ou minimização, a depender do

propósito da resolução (p.e., maximizar o lucro de uma operação, ou minimizar os custos).

As variáveis de decisão representam as tomadas de decisão que o modelo irá processar,

e portanto, alteram o valor final da função objetivo. As restrições, por sua vez, visam

aplicar as condições impostas pelo cenário no qual o problema está envolvido, afetando

diretamente o valor das variáveis de decisão. Logo, o grande objetivo é escolher os valo-

res das variáveis de decisão que atingem o melhor valor posśıvel para a função objetivo,

respeitando as restrições impostas à modelagem.

Determinar esses valores de forma apropriada não é algo trivial, tanto pela coleta

de informações (nem sempre os problemas estudados possuem dados estruturados para

a análise), quanto pela modelagem em si. Por isso, outra prática comum na área de

Pesquisa Operacional é a análise de sensibilidade, que busca refinar o modelo a partir

de testes com as variáveis de decisão e com os parâmetros (as constantes), por meio
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da alteração, retirada ou inclusão de outros valores plauśıveis. Ou seja, a análise de

sensibilidade permite o entendimento de como as mudanças nos parâmetros alteram a

solução ótima de um problema (WINSTON, 2004).

Outro ponto interessante a ser mencionado é que nem sempre a solução ótima é

posśıvel de ser encontrada: seja por uma restrição de capacidade computacional ou de

tempo. Dessa forma, heuŕısticas são desenvolvidas para atender às condições limitan-

tes que o contexto do problema impõe. Em geral, as heuŕısticas descrevem uma classe

de procedimentos para encontrar soluções aceitáveis para uma variedade de problemas

complexos, ou seja, são uma coleção de regras ou etapas que orientam alguém para uma

solução que pode ou não ser a solução ótima (GASS; FU, 2013).

2.2 Problemas de Corte e Empacotamento

Dentro da extensa área de Pesquisa Operacional há a classe de Problemas de Corte

e Empacotamento, que se destaca por seu amplo repertório teórico combinado com uma

vasta aplicação em problemas de produção, como por exemplo nos setores metalúrgico,

têxtil ou gráfico. Ela já foi discutida em diversos trabalhos, como em DYCKHOFF

(1990), DOWSLAND e DOWSLAND (1992), SWEENEY e PATERNOSTER (1992),

MARTELLO (1994), BISCHOFF e WÄSCHER (1995), LODI et al. (2002b), WANG e

WÄSCHER (2002), WÄSCHER et al. (2007), MORABITO et al. (2009), IORI et al.

(2021) e OLIVEIRA et al. (2022). Em SWEENEY e PATERNOSTER (1992) há um

compilado de livros, artigos e dissertações que, juntos, até então, somavam mais de 400

trabalhos envolvendo o tópico, o que já dá dimensão sobre a importância e desenvolvi-

mento do tema.

Um ponto interessante em relação a essa classe de problemas é que a forte relação entre

corte e empacotamento se dá pela dualidade entre o corpo material e o espaço ocupado

por ele (FAINA, 2020). Ou seja, há uma dualidade entre cortar material/empacotar

espaço e cortar espaço/empacotar material (JUNQUEIRA, 2009). A mesma lógica vale

para o universo gráfico: cortar uma folha de impressão em pequenas partes (imagens), é

o mesmo que empacotar essas imagens dentro de uma folha. Por isso, os termos Corte e

Empacotamento caminham juntos nessa famı́lia de problemas.

A primeira tipologia amplamente reconhecida sobre os Problemas de Corte e Empa-

cotamento foi apresentada em DYCKHOFF (1990) com o intuito de unificar as distintas

notações na literatura e concentrar a pesquisa futura em problemas espećıficos. Porém,
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com a evolução dos estudos sobre os Problemas de Corte e Empacotamento, a catego-

rização tornou-se insuficiente para cobrir todas as especificidades nas quais a área já

havia avançado. Assim, tomando como base o trabalho de Dyckhoff, uma nova proposta

foi apresentada em WÄSCHER et al. (2007), que será detalhada a seguir.

A estrutura utilizada no trabalho define que existem apenas dois conjuntos de ele-

mentos, que são os objetos grandes (equivalentes a entrada ou oferta) e os itens pequenos

(que são a sáıda ou demanda). Os elementos são geométricos, e devem obedecer a duas

condições: os itens não podem se sobrepor, e devem estar inteiramente contidos dentro

do conjunto de objetos grandes. Além disso, assim como um problema tradicional de

Pesquisa Operacional, uma função objetivo deve ser otimizada, seja ela mono ou multi-

objetivo. Dependendo do contexto do problema estudado, a solução do modelo não pre-

cisa necessariamente utilizar todos os objetos ou itens, ela pode selecionar apenas uma

porção. Por fim, para atingir o ótimo global há 5 sub-problemas que devem ser resolvidos

simultaneamente:

• Problema de seleção em relação aos objetos.

• Problema de seleção em relação aos itens.

• Problema de agrupamento em relação aos itens escolhidos.

• Problema de alocação em relação à atribuição dos itens aos objetos.

• Problema de layout em relação ao arranjo dos itens em cada um dos objetos seleci-

onados, respeitando as condições geométricas.

Segundo os autores, existem 3 grandes motivações geradas pela tipologia desenvolvida

por Dyckhoff que os fizeram apresentar uma nova proposta: i) nem todos os Problemas de

Corte e Empacotamento podem ser atribúıdos exclusivamente a um tipo de sub-problema;

ii) a tipologia é parcialmente inconsistente, e sua aplicação pode levar a resultados con-

fusos; e iii) a aplicação da tipologia não resulta necessariamente em uma categorização

homogênea dos problemas estudados. Assim, a nova tipologia foi desenvolvida com base

em 5 critérios, que serão apresentados na Subseção 2.2.1.

A primeira definição trazida pela tipologia de Wäscher diz respeito aos aspectos do

problema estudado. Caso ele envolva apenas aspectos de Problemas de Corte e Empa-

cotamento, então, diz-se que ele é do tipo puro; caso ele envolva aspectos adicionais,

então ele é uma extensão do problema, como vemos nos seguintes trabalhos: problema



21

de minimização de padrões em VANDERBECK (2000); problema de sequenciamento de

padrões em FOERSTER e WÄSCHER (1998), YANASSE (1997) e YUEN (1995); ou no

problema de dimensionamento de lote em NONÅS e THORSTENSON (2000).

Dentro dos problemas puros, 5 critérios são definidos para categorizá-los: tipo de atri-

buição, sortimento dos itens pequenos, sortimento dos objetos grandes, dimensionalidade

e formato dos itens pequenos. Caso apenas os dois primeiros sejam definidos durante o

estudo do caso, temos um problema do tipo básico; caso os três primeiros sejam definidos,

temos um problema do tipo intermediário; caso todos os critérios sejam utilizados na

definição, temos um problema do tipo refinado.

Cada um dos critérios possui algumas premissas padronizadas, que serão apresentadas

na Subseção 2.2.1 a seguir. Caso elas sejam diferentes no caso estudado, então temos uma

variante do problema puro, como vemos nos trabalhos a seguir: problemas com múltiplos

objetivos em WÄSCHER (1990); problemas estocásticos em DAS e GOSH (2003); ou

problemas online em HEMMINKI et al. (1998).

Por fim, dentro dos problemas refinados, há uma distinção entre dois grupos. Caso o

problema não apresente nenhuma caracteŕıstica ou restrição adicional além dos 5 critérios

já definidos, temos um problema padrão de primeiro ńıvel. Em contrapartida, caso ele en-

volva restrições adicionais, então, ele é chamado de problema não padronizado de primeiro

ńıvel.

A estruturação apresentada anteriormente pode ser representada pela Figura 3, que

resume a categorização proposta para os Problemas de Corte e Empacotamento. A pri-

meira divisão representa se os problemas são puros ou não. Dentro dos problemas puros,

dado o número de critérios definidos, o problema pode ser básico, intermediário ou refi-

nado (representado pelas setas na porção esquerda) se seguir as premissas padronizadas

que estão elencadas na imagem; caso contrário, caracteriza-se como uma variante (setas

apontando para o retângulo à direita). Finalmente, as últimas divisões analisam se há

restrições adicionais ou não.
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Figura 3: Estruturação da tipologia de WÄSCHER et al. (2007).

Fonte: adaptado de WÄSCHER et al. (2007).

2.2.1 Critérios da Tipologia de WÄSCHER et al. (2007)

Os 5 critérios usados como base da tipologia apresentada em WÄSCHER et al. (2007)

serão descritos a seguir.

O primeiro critério é o Tipo de Atribuição. Há um conjunto de itens que precisa

ser cortado ou empacotado em um conjunto de objetos, e com isso, a tipologia define

dois casos: o de maximização das sáıdas e o de minimização das entradas. No primeiro

caso, o conjunto de objetos não é capaz de acomodar todos os itens, ou seja, não há um

problema de seleção de objetos, já que todos serão utilizados. Logo, o desafio é selecionar

o subconjunto de itens de maior valor a ser cortado/empacotado. Já no segundo cenário,

o conjunto de objetos é capaz de acomodar todos os itens. Dessa forma, há um desafio de

seleção dos objetos, que visa escolher o subconjunto de menor valor capaz de acomodar

todos os itens. O valor mencionado deve ser especificado no problema estudado (já

que pode representar custos, lucros, materiais utilizados, etc.), mas, normalmente, ele é

diretamente proporcional ao tamanho do item ou do objeto em questão. Caso o problema

envolva uma função objetivo com mais de um objetivo, ou que exija a seleção tanto dos

objetos quanto dos itens, ele é tratado como uma variante.

O segundo critério é o Sortimento dos Itens Pequenos. Há três posśıveis casos:
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itens idênticos, sortimento fracamente heterogêneo e sortimento fortemente heterogêneo.

No primeiro caso, todos os itens são idênticos em formato e tamanho. No segundo caso, há

alguns tipos de itens idênticos (cada um com uma demanda relativamente grande), e eles

podem ser agrupados em poucos grupos (ao comparar com o número total); por definição,

se a orientação dos itens mudar, eles são itens distintos e, portanto, são de tipos distintos

(consequentemente, são agrupados separadamente). No terceiro caso, o conjunto de itens

é caracterizado pelo fato de que raramente os itens compartilham semelhanças entre si,

ou seja, não há itens idênticos em formato e tamanho (e, por isso, a demanda de cada um

é unitária). Por fim, vale ressaltar que para os problemas padrão, a demanda dos itens

é uniforme (ou seja, não há itens com alta demanda e outros itens com baixa demanda).

Os problemas que possuem demandas muito diferentes são tratados como variantes.

O terceiro critério é o Sortimento dos Objetos Grandes. Há dois posśıveis casos,

que englobam outras categorias mais espećıficas internamente. O primeiro caso é o de um

único objeto, que pode ser estendido para duas categorias espećıficas: o caso onde todas as

dimensões são fixas ou o caso onde pelo menos uma dimensão pode variar. Já o segundo

caso é o de múltiplos objetos, que pode ser estendido para três categorias espećıficas: todos

os objetos são idênticos, eles são fracamente heterogêneos ou são fortemente heterogêneos.

É importante mencionar que no caso de múltiplos objetos, as dimensões são sempre fixas

(nenhuma dimensão pode variar). Para os problemas básicos (com os dois critérios iniciais

definidos), tanto em duas como em três dimensões considera-se que os objetos possuem

formatos retangulares (retângulos no caso bidimensional e cubóides no caso tridimensio-

nal) e são do mesmo material. Os casos nos quais essas premissas não são verdadeiras são

tratados como variantes.

O quarto critério é a Dimensionalidade. Na tipologia apresentada, as dimensões

consideradas como padrão são: unidimensional (p.e., corte de um rolo de papel em partes

menores, na qual a única dimensão relevante é o comprimento do rolo); bidimensional

(p.e., elaboração de um Plano de Corte para uma gráfica, na qual as dimensões de altura

e largura são relevantes); tridimensional (p.e., arranjo de caixas dentro de um contêiner,

onde as 3 dimensões são relevantes). Casos com 4 ou mais dimensões, como em (LINS et

al., 2002), são tratados como variantes. Os dois exemplos mais comuns de variantes são:

multidimensional (p.e., inclusão do fator temporal em uma análise) e dimensão-aberta,

quando não há restrição em uma das dimensões relevantes (p.e., um caso 1.5D significa

que uma das dimensões não está fixa, seja ela a largura ou a altura; um exemplo pode ser

encontrado em (KOKTEN; SEL, 2022) para a indústria madeireira).

O quinto critério é o Formato dos Itens Pequenos. Há dois posśıveis casos que
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normalmente são aplicados em duas ou três dimensões: itens regulares (p.e., retângulos,

ćırculos, etc.) e itens irregulares. Tratando mais especificamente sobre os retângulos,

que são os itens mais estudados, geralmente eles são posicionados de forma ortogonal.

Além disso, de forma padronizada, o conjunto de itens é inteiramente de itens regulares,

ou inteiramente de itens irregulares. Os casos que consideram um posicionamento não-

ortogonal ou um conjunto de itens que aceita os dois formatos são tratados como variantes.

2.2.2 Tipos de Problemas de Corte e Empacotamento

Os tipos de Problemas de Corte e Empacotamento são definidos mediante a especi-

ficação dos cinco critérios apresentados anteriormente. Os problemas básicos, como já

mencionado, combinam a definição apenas dos dois primeiros critérios apresentados para

segmentar o caso estudado: tipo de atribuição e sortimento dos itens pequenos. Com

essas definições, esses problemas formam o alicerce da nomenclatura dos tipos básicos de

Problemas de Corte e Empacotamento. A Figura 4 ilustra as combinações relevantes de

critérios e seus respectivos tipos.

Figura 4: Tipos básicos de Problemas de Corte e Empacotamento.

dimensões fixas

Problemas de C&P

Tipo de 
Atribuição

Maximização das 
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Fonte: adaptado de WÄSCHER et al. (2007).

Com o intuito de definir tipos de problemas mais homogêneos, a definição do terceiro

critério (sortimento dos objetos grandes) implica em problemas intermediários, que for-

mam o panorama geral dos Problemas de Corte e Empacotamento, com as nomenclaturas

mais utilizadas pela área no desenvolvimento dos trabalhos. Para cada tipo de problema

definido, uma sigla foi elaborada, tornando a identificação de cada caso única.
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As Figuras 5 e 6 a seguir detalham os tipos de problemas intermediários seguindo

a estruturação nos três critérios considerados. Nas linhas temos as caracteŕısticas dos

objetos grandes, enquanto nas colunas temos o sortimento dos itens pequenos. Porém,

como a definição do primeiro critério (tipo de atribuição) é fundamental para definir

o problema estudado, a Figura 5 representa os problemas de maximização das sáıdas,

enquanto a Figura 6 ilustra os problemas de minimização das entradas.

Figura 5: Problemas de maximização das sáıdas.

Fonte: adaptado de WÄSCHER et al. (2007).
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Figura 6: Problemas de minimização das entradas.

Fonte: adaptado de WÄSCHER et al. (2007).

Por fim, caso os dois últimos critérios sejam definidos (dimensionalidade e formato

dos itens pequenos), temos os problemas refinados. As nomenclaturas resultantes são ca-

racterizadas por adjetivos que são adicionados aos nomes já apresentados nos problemas

intermediários. Generalizando, segue-se um padrão que adiciona primeiro a dimensiona-

lidade (D), depois o formato (F) e por último o tipo de problema intermediário (TPI),

resultando em uma terminologia genérica D-F-TPI.

Logo, se considerarmos um problema de minimização das entradas bidimensional,

com múltiplos objetos fracamente heterogêneos e um conjunto de itens retangulares com

sortimento fortemente heterogêneo, temos um Two-Dimensional Rectangular Multiple Bin

Size Bin Packing Problem, ou seja, um 2D-R-MBSBPP. Este é o tipo de problema refinado

que constitui o foco deste trabalho pois melhor se alinha à operação de uma gráfica, já que

reflete o cenário em que há múltiplos arquivos retangulares fortemente heterogêneos para

impressão (cada pedido é único em termos de quantidade e dimensões), que necessitam ser

cortados em um conjunto fracamente heterogêneo de folhas padronizadas (que possuem

poucas opções de tamanho).
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2.3 Problemas de Corte Bidimensional

Como o objetivo do presente trabalho é otimizar os Planos de Impressão e Corte

de uma gráfica, os Problemas de Corte e Empacotamento Bidimensional (como apresen-

tados na tipologia vista na seção anterior) estão diretamente relacionados aos modelos

desenvolvidos. Portanto, eles serão o foco principal do caṕıtulo a partir deste momento.

Inicialmente, vale destacar dois trabalhos interessantes acerca do tema. Recentemente,

em IORI et al. (2021), um novo trabalho de revisão bibliográfica sobre os Problemas de

Corte e Empacotamento Bidimensional foi realizado, abordando tanto os métodos exatos

desenvolvidos quanto as heuŕısticas mais aplicadas. O trabalho também aborda técnicas

de pré-processamento e métodos de relaxação. Além dele, em OLIVEIRA et al. (2022) há

uma lista de trabalhos focada em Problemas de Corte e Empacotamento que envolvem

elementos retangulares, que estão relacionados com o problema abordado no presente

trabalho.

Primeiramente, é importante ressaltar que, para fins de uniformização, existe uma

nomenclatura padrão de alguns termos sempre presentes nesse tipo de problema. Os

itens são os corpos pequenos, que precisam ser empacotados/cortados; já os objetos são

os corpos grandes, nos quais os itens pequenos serão alocados (WÄSCHER et al., 2007).

A modelagem, então, é responsável por definir a distribuição dos itens dentro dos objetos,

e caso alguma parte não seja utilizada, ela é chamada de sobra. Na Figura 7 a seguir é

posśıvel observar que o retângulo maior é o objeto, os elementos coloridos menores são os

itens e a área branca hachurada é a sobra.

Um tema relevante acerca dessa famı́lia de problemas é que essas alocações (dos itens

dentro dos objetos), em termos matemáticos, podem ser traduzidas para uma série de

combinações que precisam ser testadas até o modelo encontrar a melhor configuração

posśıvel. Por isso, esse tipo de problema é comumente caracterizado como NP-hard, que

possui a caracteŕıstica de não ser facilmente solucionável. Ou seja, isso significa que

os algoritmos que resolvem o problema de maneira ótima terão que gerar e comparar

muitas soluções candidatas e, portanto, podem consumir muito tempo para encontrar

a melhor solução (FAINA, 2020), especialmente em problemas nos quais as instâncias

envolvem diversos itens e objetos. Por esse motivo, a utilização de heuŕısticas é comum

em problemas dessa famı́lia.
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Figura 7: Representação de objeto, item e sobra.

Fonte: o Autor.

2.3.1 Conceitos Relevantes

Dentro da famı́lia de Problemas de Corte e Empacotamento Bidimensional, há uma

série de conceitos relevantes que se estendem por inúmeras aplicações e variantes. Os

principais serão apresentados a seguir, com o intuito de formar uma base sólida de conhe-

cimento para o desenvolvimento deste trabalho.

O primeiro conceito envolve a forma dos itens a serem empacotados. Eles podem

assumir formas regulares (p.e., retângulos, ćırculos, etc.), que envolvem os estudos mais

comuns dentro da área; mas também podem assumir formas irregulares, uma variante

do problema muito mais complexa de ser resolvida por conta do formato irregular dos

itens, que não podem se sobrepor (LEAO et al., 2020). A Figura 8 exemplifica um

empacotamento de itens irregulares.

Figura 8: Empacotamento de itens irregulares.

Fonte: adaptado de BENNEL e OLIVEIRA (2008).
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O segundo conceito envolve o posicionamento dos itens. A maioria dos problemas

estudados envolvem o empacotamento de itens com posicionamento ortogonal, ou seja, os

lados do item estão paralelos ou perpendiculares aos lados do objeto. Porém, em DE CANI

(1978) há uma demonstração de que, na prática, o posicionamento não-ortogonal também

deve ser considerado: o posicionamento não-ortogonal pode levar a melhores arranjos, ou

até mesmo à inclusão de itens que não podem ser empacotados ortogonalmente no objeto.

A Figura 9 exemplifica esse caso, evidenciando que, para o mesmo objeto, somente o

posicionamento não-ortogonal é capaz de empacotar o retângulo alongado, já que ele

possui um comprimento maior do que os lados do objeto.

Figura 9: Empacotamento não-ortogonal.

Fonte: o Autor.

O terceiro conceito envolve o padrão de corte e empacotamento. Em problemas nos

quais os itens só podem ser obtidos ao realizar cortes ortogonais de um lado ao outro

do objeto, sem passar por cima de qualquer item, diz-se que o padrão utilizado é o gui-

lhotinado (SCHEITHAUER, 2017). Caso os cortes não sejam ortogonais, ou possam ser

interrompidos antes de atingir o outro lado do objeto (como cortes com uma tesoura, por

exemplo), temos o caso não-guilhotinado. A Figura 10 ilustra os dois padrões: guilhoti-

nado (a) e não guilhotinado (b).

O quarto conceito envolve os estágios de corte. Caso o problema estudado imponha

um limite máximo de cortes para a obtenção de um item, supondo que esse limite seja

n, então, ele é classificado como um corte em n-estágios. Nessa definição, a sequência

de cortes sempre segue um padrão: o primeiro corte normalmente é na horizontal; o
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Figura 10: Padrões guilhotinado e não-guilhotinado.

Fonte: adaptado de DO NASCIMENTO et al. (2022).

segundo corte é na vertical; o próximo corte é na horizontal novamente; e assim por

diante, alternadamente. Caso ele não possua restrições quanto ao número máximo de

cortes, então a classificação de estágios não é aplicada (OLIVEIRA et al., 2022). A

Figura 11 ilustra dois exemplos: corte em dois estágios (a) e corte em três estágios (b).

O primeiro estágio é identificado pela seta apontando para a direita, o segundo estágio

são os cortes na vertical, e o terceiro estágio (presente somente em b) é representado pela

seta apontando para a esquerda.

Figura 11: Estágios de corte.

Fonte: adaptado de OLIVEIRA et al. (2022).

O quinto conceito envolve a exatidão dos cortes. Problemas com restrição no número

de cortes podem envolver a necessidade de um corte adicional para extrair o item, nos

cenários em que as dimensões do item não são compat́ıveis com os cortes realizados pelos

estágios anteriores. A esse corte adicional dá-se o nome de trimming, e ele não se configura

como um novo estágio. Portanto, diz-se que um problema é exato caso ele não permita o
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trimming, e não-exato caso ele permita (OLIVEIRA et al., 2022). A Figura 12 representa

os dois tipos de problema: exatos (a) e não-exatos (b). A área em branco hachurada é

caracterizada como sobra, já que essa área é retirada para extrair o item, mas não possui

as dimensões de um objeto padrão. Dependendo do formato da sobra, de seu tamanho e

também levando em conta a operação da empresa, as sobras podem ser reaproveitáveis,

caso elas possam ser inclúıdas novamente no processo (ANDRADE et al., 2016), ou serem

caracterizadas como perdas, caso elas não possam retornar à operação.

Figura 12: Padrões exato e não-exato.

Fonte: adaptado de OLIVEIRA et al. (2022).

O sexto conceito envolve a orientação dos itens. Os problemas podem permitir ou

proibir a rotação dos itens em 90°. Na indústria de impressão (o foco deste trabalho), no

caso de problemas bidimensionais, os termos mais utilizados para descrever a orientação

de um item são: paisagem, quando a largura é maior que a altura; ou retrato, quando a

altura é maior que a largura. Quando o problema próıbe as rotações, ele é chamado de

orientado; caso permita as rotações em 90°, diz-se que ele é não-orientado (DELL’AMICO

et al., 2002). A Figura 13 a seguir representa os dois cenários, para um conjunto de itens

que está definido à esquerda.

Figura 13: Padrões orientado e não-orientado.

Fonte: o Autor.
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O sétimo conceito envolve limitações sobre a quantidade de itens cortados e está pre-

sente em OLIVEIRA et al. (2022). Um problema é considerado restrito quando um limite

sobre a quantidade de itens a serem cortados é definido, seja ele inferior ou superior. Caso

ambos limites sejam definidos, então ele é duplamente-restrito. Caso nenhum dos limites

seja definido, ele é irrestrito. Além disso há outro conceito interessante em OLIVEIRA

et al. (2022), o de ponderação: caso o valor de todos os itens seja igual às suas dimensões

(p.e., área no caso bidimensional) temos um caso não-ponderado; caso contrário, ou seja,

se o item possuir um outro valor associado que leve em conta fatores distintos (p.e., custo

ou ńıvel de prioridade), então temos um caso ponderado.

O oitavo e último conceito envolve a acomodação dos itens. Em diversos casos estu-

dados, há um grande número de itens a serem cortados dentro de um objeto. Há uma

abordagem clássica, e muito utilizada, que envolve empacotar os itens em prateleiras, ou

em ńıveis, que são faixas delimitadas ao longo de todo o objeto. Para fins de padronização,

o presente trabalho optará por utilizar o termo ńıveis. Segundo LODI et al. (2002b) o

primeiro ńıvel é a porção inferior do objeto, e os próximos ńıveis são produzidos pela linha

horizontal que coincide com o topo do item mais alto colocado no ńıvel abaixo. Ou seja,

a altura do item mais alto de um ńıvel define o teto de seu ńıvel, e consequentemente o

piso do próximo ńıvel. Não é exigido que os ńıveis possuam a mesma altura, e nem que

os itens estejam sempre alocados no piso (embora essa seja a situação mais comum). A

Figura 14 ilustra diversos ńıveis em um objeto.

Figura 14: Representação de ńıveis em um objeto.

Fonte: o Autor.
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2.4 Problemas de Corte Bidimensional Guilhotinado

Dado que o objeto de estudo do presente trabalho é uma gráfica, os Problemas de

Corte Bidimensional Guilhotinado passam a ser o foco do Caṕıtulo 2 a partir deste mo-

mento, já que o setor gráfico, assim como outras indústrias (p.e., indústria moveleira ou de

chapas de madeira), utiliza a estratégia de cortes guilhotinados na montagem dos Planos

de Impressão e Corte. Diversos trabalhos já foram escritos acerca dessa vizinhança de

problemas nessas indústrias, como em GILMORE e GOMORY (1965), FARLEY (1988),

YANASSE et al. (1991), CARNIERI et al. (1994), MORABITO e ARENALES (2000) e

BELLUZZO e MORABITO (2005).

Apenas relembrando alguns conceitos já mencionados na Subseção 2.3.1, um corte é

dito guilhotinado quando os itens são obtidos por meio de cortes ortogonais de um lado ao

outro do objeto, sem serem interrompidos. Ou seja, no caso dos problemas bidimensionais

com objetos e itens retangulares, um corte guilhotinado produz dois novos retângulos.

Outro conceito importante, especialmente para a indústria gráfica, é a quantidade

de estágios de corte. Usualmente, os itens devem ser obtidos em até dois estágios. No

primeiro estágio, cortes guilhotinados horizontais (paralelos à base) são realizados no

objeto, para a obtenção de um conjunto de tiras, que são os ńıveis. No segundo estágio,

então, são realizados cortes guilhotinados verticais (paralelos ao lado) nas tiras, para a

obtenção dos itens. Se não houver necessidade de cortes adicionais (ou seja, se dentro de

cada ńıvel os itens possúırem alturas idênticas), diz-se que o padrão de corte guilhotinado

é exato; caso ainda haja necessidade de realizar o trimming, diz-se que o padrão é não-

exato. A Figura 15 a seguir representa os dois padrões de corte guilhotinados em dois

estágios, exato (a) e não-exato (b).

Seguindo a tipologia apresentada em WÄSCHER et al. (2007) na Subseção 2.2.2, há 4

tipos principais dos Problemas de Corte e Empacotamento Bidimensional que consideram

a alocação de itens distintos: Placement Problem, caso o problema seja de maximização

das sáıdas com um sortimento fracamente heterogêneo de itens; Knapsack Problem, pro-

blema de maximização das sáıdas, mas com um sortimento fortemente heterogêneo de

itens; Cutting Stock Problem, caso o problema seja de minimização das entradas com um

sortimento fracamente heterogêneo de itens; e por fim o Bin Packing Problem, problema

de minimização das entradas, mas com um sortimento fortemente heterogêneo de itens.

A Figura 16 a seguir resume os quatro principais tipos de problemas.
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Figura 15: Cortes guilhotinados em dois estágios, exatos e não-exatos.

Fonte: o Autor.

Figura 16: Principais tipos de problemas com itens distintos.

Fonte: o Autor.

Olhando para os Problemas de Corte Bidimensional Guilhotinado em dois estágios,

que serão o foco do presente trabalho, a maioria dos trabalhos presentes na literatura

lidam ou com o Knapsack Problem em dois estágios, ou com o Cutting Stock Problem em

dois estágios (ANDRADE et al., 2016). A primeira tentativa de modelagem para esses

problemas foi vista em GILMORE e GOMORY (1965). Através de uma extensão da

modelagem proposta pelos dois autores para o caso unidimensional, eles propuseram uma
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abordagem através do método SIMPLEX com um procedimento de geração de colunas

para gerar o padrão de corte em dois estágios, utilizando ńıveis para alocar os itens.

Outros trabalhos relevantes que buscam apresentar uma proposta de solução para o

caso bidimensional com cortes guilhotinados em dois estágios podem ser encontrados em

BEASLEY (1985), HADJICONSTANTINOU e CHRISTOFIDES (1995), MORABITO

e ARENALES (1996), RIEHME et al. (1996), MORABITO e GARCIA (1998), CUI et

al. (2005), YANASSE e KATSURAYAMA (2005), BELOV e SCHEITHAUER (2006),

CINTRA et al. (2008) e HIFI et al. (2009).

Como o foco do presente trabalho está relacionado ao Two-Dimensional Rectangular

Multiple Bin Size Bin Packing Problem (2D-R-MBSBPP), as subseções a seguir finalizam

a fundamentação teórica, apresentando os principais modelos desenvolvidos, estratégias e

algoritmos utilizados para resolver problemas dessa vizinhança. Elas servem como uma

base de conhecimento sólida dos problemas bidimensionais guilhotinados em dois estágios,

buscando consolidar os principais conceitos e preparar-se para a resolução do problema

estudado na gráfica, já que a base de formulação e modelagem será a mesma, porém,

aplicando premissas e restrições espećıficas ao estudo de caso.

2.4.1 Histórico de Abordagens

A seguir, serão apresentadas três abordagens desenvolvidas sobre o tema que formam

uma base sólida para entender essa classe de problemas. A ideia é apresentar os principais

trabalhos que dão origem à modelagem desenvolvida no Caṕıtulo 4. Vale ressaltar que as

três abordagens tratam apenas os problemas com orientação fixa (i.e., sem a possibilidade

de rotação em 90°). Uma das contribuições do presente trabalho, que será observada no

Caṕıtulo 3, é a extensão para o caso não-orientado (que permite a rotação em 90° dos

itens), que se assemelha à operação da gráfica estudada.

A primeira abordagem é o modelo M1 apresentado em LODI e MONACI (2003), um

trabalho que trata sobre o Two-Dimensional Knapsack Problem (TDK ), ou seja, o caso

bidimensional do problema de maximização das sáıdas com itens fortemente heterogêneos

e um único objeto. Essa abordagem já utiliza o conceito de ńıveis. Generalizando o TDK

segundo LODI e MONACI (2003), temos um único objeto retangular S com largura W e

altura H, e uma lista de itens retangulares m com diversos tipos de formato i que devem

ser cortados a partir de S. Cada tipo de formato i (i = 1, . . . ,m) é caracterizado por uma

largura w̄i, altura h̄i, lucro p̄i e um limite superior ūbi indicando o número máximo de

itens do tipo i que podem ser cortados. O objetivo do problema é determinar um padrão
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de corte de S maximizando a soma dos lucros dos itens cortados.

No modelo M1 considera-se que todos os itens de um mesmo tipo são distintos;

logo, para cada tipo de formato i (i = 1, . . . ,m), define-se um limite superior ubi com

itens idênticos j de forma que hj = h̄i, wj = w̄i e pj = p̄i. Temos n =
∑m

i=1 ubi

indicando o número total de itens, e consideramos que os itens estão ordenados de forma

que h1 ≥ h2 ≥ . . . ≥ hn. O modelo assume que n potenciais ńıveis podem ser inicializados

(ou seja, o objeto pode chegar a ter um item alocado em cada ńıvel): o ńıvel k, se utilizado,

é inicializado pelo item k (k = 1, . . . , n). Desta forma, a seguinte variável binária pode

ser definida para indicar os posśıveis itens n cortados de um ńıvel:

xjk =

1, se o item j é cortado do ńıvel k

0, caso contrário
(k = 1, . . . , n; j = k, . . . , n) (2.1)

Logo, o modelo M1 de LODI e MONACI (2003) pode ser representado como um

modelo de Programação Linear Inteira para descrever o Two-Dimensional Knapsack Pro-

blem:

max
n∑

j=1

pj

j∑
k=1

xjk (2.2)

s.a.

j∑
k=1

xjk ≤ 1 (j = 1, . . . , n) (2.3)

n∑
j=k+1

wjxkj ≤ (W − wk)xkk (k = 1, . . . , n− 1) (2.4)

n∑
k=1

hkxkk ≤ H (i = 1, . . . , n) (2.5)

xjk ∈ {0, 1} (k = 1, . . . , n; j = k, . . . , n) (2.6)

A função objetivo (2.2) maximiza a soma dos lucros dos itens cortados. As restrições

(2.3) garantem que cada item só é cortado no máximo uma única vez, e somente em ńıveis

cuja altura seja no mı́nimo igual à altura do item. As restrições (2.4) garantem que a

largura do ńıvel não pode exceder a largura do objeto, e que ou o item k está no ńıvel

k, ou o ńıvel k está vazio. As restrições (2.5) impõem que a soma das alturas dos ńıveis

abertos não podem exceder a altura do objeto. Note que as variáveis xkk (k = 1, . . . , n)

possuem dois significados: xkk = 1 implica que o item k é cortado do ńıvel k; logo, o

ńıvel k é utilizado e inicializado pelo item k correspondente. Por fim, as restrições (2.6)

definem o domı́nio de xjk.
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A segunda abordagem é o modelo M2, ainda presente em LODI e MONACI (2003).

A principal diferença em relação ao modelo M1 é o agrupamento de itens semelhantes.

Nele, considera-se que os itens com o mesmo formato são agrupados; a separação ocorre

somente nos itens que inicializam um ńıvel. Portanto, é necessário definir um mapeamento

entre os diversos tipos de formato i (i = 1, . . . ,m), e dos potenciais ńıveis k (k = 1, . . . , n).

Observa-se, portanto, que qualquer item do tipo i pode ser cortado no intervalo de

ńıveis [1,
∑i

s=1 ubs]. Além disso, define-se αi =
∑i

s=1 ubs (i = 1, . . . ,m), com α0 = 0. Por

outro lado, qualquer ńıvel k pode ser utilizado para obter itens cujo tipo está no intervalo

[βk,m], com βk = min {r : 1 ≤ r ≤ m,αr ≥ k} (k = 1, . . . , n). Assim, βk (k = 1, . . . , n)

denota o tipo de formato que deve inicializar o ńıvel k. Como assume-se que h1 ≥ h2 ≥
. . . ≥ hn, temos dois conjuntos separados de variáveis.

O primeiro conjunto é composto das seguintes variáveis inteiras (não-binárias), onde

i = 1, . . . ,m, k ∈ [1, αi], e o termo adicional indica que o item do tipo i inicializando o

ńıvel k é considerado separadamente (se o ńıvel corresponder a este tipo de item):

xik =

número de itens do tipo i cortados do ńıvel k se i ̸= βk

número de itens adicionais do tipo i cortados do ńıvel k se i = βk

(2.7)

O segundo conjunto envolve as seguintes variáveis binárias:

qk =

1, se o ńıvel k é utilizado

0, caso contrário
(k = 1, . . . , n) (2.8)

Logo, o modelo M2 apresentado em LODI e MONACI (2003) pode ser represen-

tado como um modelo de Programação Linear Inteira para descrever o Two-Dimensional

Knapsack Problem:

max
m∑
i=1

p̄i(

αi∑
k=1

xik +

αi∑
k=αi−1+1

qk) (2.9)

s.a.

αi∑
k=1

xik +

αi∑
k=αi−1+1

qk ≤ ubi (i = 1, . . . ,m) (2.10)

m∑
i=βk

w̄ixik ≤ (W − w̄βk
)qk (k = 1, . . . , n) (2.11)

n∑
k=1

h̄βk
qk ≤ H (i = 1, . . . , n) (2.12)
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αi∑
s=k

xis ≤ ubi − (k − αi−1) (i = 1, . . . ,m; k ∈ [αi−1 + 1, αi]) (2.13)

0 ≤ xik ≤ ubi (i = 1, . . . ,m; k ∈ [1, αi]) (2.14)

qk ∈ {0, 1} (k = 1, . . . , n) (2.15)

A função objetivo (2.9) corresponde à (2.2) do modelo M1, porém, com a adição da

nova variável de decisão. As restrições (2.10), (2.11) e (2.12) correspondem respectiva-

mente à (2.3), (2.4) e (2.5) do modelo M1, com as devidas adaptações, garantindo que

o item só é cortado no máximo uma vez (2.10), que a largura do objeto não é excedida

(2.11) e que a altura do objeto não é excedida (2.12). O propósito das restrições (2.13),

que são redundantes em termos de formulação da Programação Linear Inteira (já que

podem ser omitidas sem alterar a solução viável (TELGEN, 1983)), é fortalecer o limite

nas variáveis xik, dado pelas restrições (2.14) (LODI; MONACI, 2003). Ou seja, sem as

restrições (2.13), parte da estrutura obtida no modelo M1 que considera separadamente

os itens com a mesmo formato seria perdida no modelo M2. Por fim, as restrições (2.15)

definem o domı́nio de qk.

Por fim, a terceira e última abordagem envolve um modelo de Programação Linear

Inteira para o empacotamento em ńıveis desenvolvido em LODI et al. (2004). Essa for-

mulação tornou-se muito popular para resolver o Bin Packing Problem, já que descreve

o caso bidimensional do problema de maximização das sáıdas com itens fortemente he-

terogêneos e com múltiplos objetos (diferentemente dos modelos M1 e M2 apresentados

anteriormente, que tratam o caso de um único objeto).

Antes de detalhar essa abordagem, devemos assumir, sem perda de generalidade, que

os empacotamentos nessa modelagem seguem as três premissas elencadas a seguir:

(i) em cada ńıvel, o item mais à esquerda é o que possui a maior altura.

(ii) o primeiro ńıvel (o mais baixo) de cada objeto é o ńıvel com maior altura.

(iii) os itens são ordenados de forma que h1 ≥ h2 ≥ ... ≥ hn.

A esse empacotamento damos o nome de normalizado. A Figura 17 a seguir evidencia

em (a) um empacotamento normalizado, enquanto em (b) apresenta um empacotamento

por ńıveis sem essa condição. Os itens foram numerados em ordem decrescente de altura,

ou seja, o item 1 é o que possui a maior altura, enquanto o item 6 é o que possui a menor

altura.
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Figura 17: Empacotamentos normalizado e não-normalizado.

Fonte: o Autor.

O modelo utiliza quatro conjuntos de variáveis: os dois primeiros se referem ao em-

pacotamento dos itens dentro dos ńıveis; já os dois últimos se referem ao empacotamento

dos ńıveis dentro dos objetos. A modelagem assume que há n potenciais ńıveis, cada um

com um item i o inicializando, e portanto, cada ńıvel com sua altura hi. A seguir, temos

a primeira variável de decisão.

yi =

1, se o item i inicializa o ńıvel i

0, caso contrário
(i = 1, ..., n) (2.16)

Por conta de (i) e (iii) apresentados anteriormente, somente itens j que satisfazem

j > i podem ser empacotados no ńıvel i (se este ńıvel for realmente inicializado pelo item

i). Assim, temos a segunda variável de decisão:

xij =

1, se o item j é empacotado dentro do ńıvel i

0, caso contrário
(i = 1, ..., n− 1; j > i) (2.17)

De forma similar, assumimos que há n potenciais objetos, cada um com um potencial

ńıvel k que o inicializa. Assim, temos a terceira variável de decisão.

qk =

1, se o ńıvel k inicializa o objeto k

0, caso contrário
(k = 1, ..., n) (2.18)
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Por conta de (ii) e (iii) apresentados anteriormente, somente ńıveis i que satisfazem

i > k podem ser empacotados no objeto k (se este objeto for realmente inicializado pelo

ńıvel k). Assim, temos a quarta variável de decisão:

zki =

1, se o ńıvel i é alocado ao objeto k

0, caso contrário
(k = 1, ..., n− 1; i > k) (2.19)

Dessa forma, o modelo completo de Programação Linear Inteira desenvolvido no tra-

balho de LODI et al. (2004) que descreve o Bin Packing Problem está detalhado a seguir:

min
n∑

k=1

qk (2.20)

s.a.

j−1∑
i=1

xij + yj = 1 (j = 1, ..., n) (2.21)

n∑
j=i+1

wjxij ≤ (W − wi)yi (j = 1, ..., n− 1) (2.22)

i−1∑
k=1

zki + qi = yi (i = 1, ..., n) (2.23)

n∑
i=k+1

hizki ≤ (H − hk)qk (k = 1, ..., n− 1) (2.24)

yi, xij, qk, zki ∈ {0, 1} ∀ i, j, k (2.25)

A função objetivo (2.20) minimiza o número de objetos utilizados. As restrições

(2.21) impõem que cada item é empacotado uma única vez. As restrições (2.22) impõem

a limitação de largura para cada ńıvel usado (a soma das larguras dos itens não pode

ultrapassar a lagura do objeto ao qual estão alocados). As restrições (2.23) impõem

que cada ńıvel usado é alocado para um único objeto. As restrições (2.24) impõem a

limitação de altura para o objeto (a soma das alturas dos ńıveis não pode ultrapassar a

altura do objeto ao qual estão alocados). Por fim, as restrições (2.25) definem o domı́nio

das variáveis de decisão.

2.4.2 Estratégias e Algoritmos

As primeiras estratégias desenvolvidas para solucionar os Problemas de Corte Em-

pacotamento Bidimensional Guilhotinado surgiram a partir do caso unidimensional do

Bin Packing Problem, já utilizando o conceito de ńıveis e do empacotamento normali-

zado. Apesar de serem estratégias que surgiram para resolver o caso unidimensional, elas
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são a base (a primeira etapa) de resolução dos problemas bidimensionais do Bin Packing

Problem.

Há três heuŕısticas clássicas que envolvem o empacotamento por ńıveis. A seguir, na

Figura 18, as três estratégias estão ilustradas. Nos três casos, os itens são inicialmente

ordenados em alturas decrescentes. Seja j o item atual e s o último ńıvel criado, seguindo

o trabalho de LODI (1999), temos:

• Next-Fit Decreasing Height (NFDH): item j é empacotado justificado à es-

querda no ńıvel s, se nele couber. Caso contrário, um novo ńıvel (s = s + 1) é

criado, e j é empacotado justificado à esquerda nesse novo ńıvel.

• First-Fit Decreasing Height (FFDH): item j é empacotado justificado à esquerda

no primeiro ńıvel (de baixo para cima) onde ele couber, se houver. Se nenhum ńıvel

puder acomodar j, um novo é inicializado, assim como no NFDH.

• Best-Fit Decreasing Height (BFDH): o item j é empacotado justificado à es-

querda naquele ńıvel em que dentre aqueles onde ele couber, resulte no menor espaço

horizontal não utilizado. Se nenhum ńıvel puder acomodar j, um novo é inicializado,

assim como no NFDH.

Figura 18: Três estratégias clássicas (NFDH, FFDH e BFDH).

Fonte: adaptado de LODI (1999).

Em relação ao NFDH, é posśıvel notar que, como o item 3 não cabia no primeiro

ńıvel (por conta de sua largura), um novo ńıvel foi aberto para ele ser alocado. O mesmo
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aconteceu com o item 5, que não cabia no segundo ńıvel, e por isso um novo ńıvel foi

aberto. Ou seja, toda vez que um item não cabe em um ńıvel, uma nova é aberto, e o

próximo item é testado somente no ńıvel atual, mas não nos anteriores.

Já em relação ao FFDH, é posśıvel notar que, como o item 3 não cabia no primeiro

ńıvel (por conta de sua largura), um novo ńıvel foi aberto para ele ser alocado, assim

como no NFDH. Porém, o item 4 foi alocado no primeiro ńıvel, já que ele cabia nesse

ńıvel. Ou seja, toda vez que um item não cabe em uma ńıvel, um novo é aberto assim

como no NFDH. Porém, o próximo item é testado em todos os ńıveis abertos (de baixo

para cima), e é alocado no primeiro ńıvel que couber.

Por fim, em relação ao BFDH, também é posśıvel notar que um novo ńıvel foi aberto

para o item 3 por conta de sua largura, assim como nas duas heuŕısticas anteriores.

Entretanto, o item 4 foi alocado no segunda ńıvel (e não no primeiro como ocorreu no

FFDH), já que o espaço horizontal remanescente ao ser alocado no segundo ńıvel é menor

do que no primeiro.

Além das três abordagens clássicas, há diversos outros algoritmos que são utilizados

para resolver problemas relacionados: Split-Fit (SF) (COFFMAN et al., 1980), Reverse-

Fit (RF) (SCHIERMEYER, 1994), Algoritmo de Steinberg (STEINBERG, 1997) e Algo-

ritmo de Sleator (SLEATOR, 1980).

Outro conceito relevante em relação a caracterização das heuŕısticas é que elas podem

ser divididas em duas famı́lias de algoritmos segundo LODI (1999):

• Algoritmos de duas fases: começam empacotando os itens em um único ńıvel de

largura W . Na segunda fase, a solução por ńıveis (ou strips) é usada para construir

um empacotamento em um número finito de objetos com dimensões W × H, com

H representando a altura.

• Algoritmos de uma fase: empacotam os itens diretamente em um número finito

de objetos.

Em relação à famı́lia de algoritmos de duas fases, os principais são o Hybrid First-Fit

(HFF), o Finite Best-Strip (FBS) e o Hybrid Next-Fit (HNF). Os três algoritmos são

apresentados a seguir.

O HFF foi proposto em CHUNG et al. (1982). A primeira fase do HFF obtém um

empacotamento de ńıveis por meio do FFDH. As alturas resultantes dos ńıveis após a

aplicação do FFDH são decrescentes, ou seja, H1 ≥ H2 ≥ ... ≥ Hn. Então, basta resolver
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um Bin Packing unidimensional por meio da heuŕıstica FFDH novamente: inicializar o

objeto 1 para empacotar o ńıvel 1, e, para um i crescente, empacotar o ńıvel i atual

no objeto com menor ı́ndice posśıvel em que ela consiga ser empacotada; se não houver

nenhum objeto capaz de empacotar o ńıvel i, então, deve-se inicializar um novo objeto.

O HFF está representado na Figura 19 a seguir. Nota-se que há 4 ńıveis, sendo que

H1 ≥ H2 ≥ H3 ≥ H4. Porém, como não é posśıvel empacotar H2 no mesmo objeto que

H1, inicializou-se outro objeto. Assim como H2, não era posśıvel alocar o ńıvel com altura

H3 no primeiro objeto, somente no objeto 2; porém, foi posśıvel alocar o ńıvel com altura

H4 no objeto 1.

Figura 19: Algoritmo HFF.

Fonte: adaptado de LODI (1999).

O FBS é uma variação do HFF, e foi proposto em BERKEY e WANG (1987). Na

primeira fase, aplica-se o BFDH. Na segunda fase, basta resolver um Bin Packing unidi-

mensional por meio da heuŕıstica BFDH novamente: empacotar o ńıvel atual no objeto

cuja altura remanescente fosse mı́nima; se não houver nenhum objeto capaz de empacotar

o ńıvel atual, então, deve-se inicializar um novo objeto.

Por fim, temos o HNF, que é outra variação do HFF. Na primeira fase, adota-se o

NFDH. Na segunda fase, basta resolver um Bin Packing unidimensional considerando

o NFDH novamente: alocar o ńıvel atual no objeto atual (já aberto), se couber, ou

inicializar um objeto novo caso contrário. Devido à caracteŕıstica next-fit, os novos ńıveis

nunca serão testados em objetos anteriores. Ou seja, caso o ńıvel não caiba no objeto
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atual, um objeto novo será aberto, e os próximos ńıveis não serão testados nos objetos

previamente abertos.

Finalmente, em relação à famı́lia de uma fase, o principal algoritmo é o Finite First-

Fit (FFF). Ele foi desenvolvido e testado em BERKEY e WANG (1987). O FFF adota

a mesma estratégia do algoritmo FFDH apresentado anteriormente. O item atual é em-

pacotado no ńıvel mais baixo do primeiro objeto onde é posśıvel empacotá-lo; se nenhum

ńıvel puder acomodá-lo, então, há duas opções: um novo ńıvel capaz de acomodá-lo é

criado em algum objeto que comporte esse novo ńıvel ou um novo objeto é inicializado (se

nenhum dos objetos dispońıveis possuir o espaço vertical necessário para acomodar esse

novo ńıvel). O FFF está representado a seguir na Figura 20.

Figura 20: Algoritmo FFF.

Fonte: adaptado de PIETROBUONI (2015).

É posśıvel notar que o item 2 não cabia no objeto 1, e, por isso, um novo objeto foi

inicializado. Porém, o item 3 ainda cabia no objeto 1, assim como os itens 4, 6 e 7 que

foram alocados ao objeto 1, já que ele é o primeiro (o objeto com menor ı́ndice) no qual

eles podem ser alocados.



45

3 DESCRIÇÃO DO PROBLEMA

O desafio que o presente trabalho busca resolver, como já mencionado no Caṕıtulo 1,

é a montagem dos Planos de Impressão e Corte para uma pequena gráfica que atualmente

não possui nenhuma ferramenta para auxiliá-la nesse processo. O principal objetivo é a

redução de custos na produção de um pedido, que é estritamente dependente da quan-

tidade de folhas utilizadas na execução da ordem de serviço. Por isso, o intuito deste

caṕıtulo é apresentar o problema inserido no contexto da gráfica, esquematizando os con-

ceitos importantes e listando as principais caracteŕısticas relevantes para a modelagem.

Em relação à organização do caṕıtulo, ele está dividido em duas partes: apresentação

do problema e definição do objetivo, das variáveis e das restrições. Na primeira parte,

descreve-se o método de impressão utilizado na gráfica (que interfere diretamente nos

custos e materiais utilizados), as especificações das folhas dispońıveis para impressão e

uma análise sobre os custos totais. Já na segunda parte, o foco está no processo de

montagem do Plano e na execução dos pedidos, para que, então, o objetivo, as variáveis

e as restrições sejam definidas. A estrutura do caṕıtulo pode ser observada na Figura 21

a seguir.

Figura 21: Estrutura do Caṕıtulo 3.

Fonte: o Autor.
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3.1 Apresentação do Problema

No setor gráfico existem duas formas principais de impressão de uma imagem: offset

ou digital. A gráfica estudada utiliza a impressão digital para executar os pedidos dos

seus clientes. Ela é adequada para pequenas/médias tiragens, por possuir alta capacidade

de personalização em relação à offset (já que a digital, p.e., imprime arquivos com da-

dos variáveis ao mesmo custo; enquanto a offset implica em custos adicionais para cada

alteração feita no arquivo a ser impresso). Além disso, em relação ao fator econômico, o

custo de setup da digital é muito mais baixo que o da offset, tanto em termos financeiros

quanto em termos de tempo utilizado para preparação. A Tabela 1 a seguir compara as

duas formas principais de impressão, offset e digital, com base em 5 indicadores: quanti-

dade, qualidade, tempo, custo e personalização:

Tabela 1: Comparação entre impressão offset e digital.

Indicador Digital Offset

Quantidade ideal para pequenas ou

médias tiragens

ideal para grandes tiragens

Qualidade alta qualidade, porém limi-

tada à combinação das 4

cores padrão, que adotam

a sigla CMYK: ciano (C),

magenta (M), amarelo (Y)

e preto (K)

alta qualidade, com a pos-

sibilidade de inclusão de co-

res personalizadas

Tempo tempo de setup muito baixo tempo de setup elevado

Custo custo sempre padronizado,

independentemente da

quantidade

baseado em escala, ou seja,

o custo/unidade cai à me-

dida que o pedido é maior,

tornando-se mais barato

que a digital

Personalização ilimitada, sem custos adici-

onais

custos adicionais à cada al-

teração feita no arquivo

Fonte: o Autor.

A impressão digital, por sua vez, também possui duas formas de ser executada: por

impressoras a jato de tinta, ou por empressoras a laser. A gráfica utiliza uma impressora
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a laser para rodar os pedidos, por conta de sua maior velocidade de impressão e maior

qualidade das imagens impressas quando comparada com impressoras a jato de tinta para

essa finalidade gráfica.

Na Figura 22 a seguir encontra-se o equipamento utilizado pela empresa para a rea-

lização das impressões dos pedidos. É posśıvel observar duas partes principais: as gavetas

de papel (que armazenam as folhas utilizadas para imprimir os arquivos) e o compar-

timento dos toners, que são os recipientes que armazenam a tinta em pó utilizada em

impressoras a laser.

Figura 22: Impressora utilizada pela gráfica.

Fonte: o Autor.

Dado que a impressora possui gavetas, o papel utilizado para imprimir um arquivo já

está cortado (e não está em rolo, como seria na impressão offset). As gavetas possuem

delimitadores que cercam as bordas do papel utilizado, como observado na Figura 23 a

seguir. Vale ressaltar que as gavetas estão delimitadas por um tamanho máximo que a

estrutura comporta, ou seja, elas não aceitam qualquer tamanho de papel. No caso da

impressora utilizada, as primeiras três gavetas aceitam uma folha com, no máximo, a

dimensão 33 cm × 48 cm. A gaveta 4, por poder trabalhar aberta, está limitada apenas

pela largura do papel, que deve ser de no máximo 33 cm.
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Figura 23: Gaveta 1 da impressora.

Fonte: o Autor.

Quando a folha utilizada já possui um padrão em suas dimensões, dá-se o nome de

Formato. Os Formatos normalmente surgem a partir de uma folha matriz, ou seja, uma

folha suficientemente grande que é cortada em n partes, formando n objetos menores com

dimensões padronizadas. Os Formatos mais conhecidos são o A, p.e. o Formato A4, muito

popular em diversos segmentos. A Figura 24 a seguir ilustra os diversos Formatos que são

derivados da matriz A0, ou seja, a folha matriz do formato A, que possui dimensões 1189

mm × 841 mm. Nota-se que os Formatos são originados a partir da divisão do Formato

anterior pela metade. Ou seja, uma folha matriz A0, se dividida ao meio, gera duas folhas

com Formato A1; esta, por sua vez, se dividida ao meio, gera duas folhas com Formato

A2, e assim sucessivamente.
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Figura 24: Formatos A a partir da folha A0.

Fonte: o Autor.

Porém, os Formatos mais utilizados pela empresa não derivam da matriz A0, mas sim

de outras duas folhas matrizes com as quais os seus fornecedores trabalham: a folha com

dimensões 96 cm × 66 cm (a qual chamaremos de folha S ), ou a folha 112 cm × 76 cm (a

qual chamaremos de folha G). Ambas matrizes podem possuir diversos Formatos, assim

como os Formatos A apresentados anteriormente.

A Figura 25 a seguir ilustra os formatos mais comuns da matriz S. A mesma lógica

pode ser aplicada para a matriz G, porém, as dimensões seriam diferentes. O número que

sucede o Formato indica em quantas partes aquela folha matriz foi cortada para obter a

dimensão do Formato (p.e.: Formato 4 indica que a matriz S foi cortada em 4 partes para

obter aquelas dimensões).
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Figura 25: Formatos a partir da matriz S.

Fonte: o Autor.

Como mencionado anteriormente, a largura máxima que o equipamento da gráfica é

capaz de comportar é 33 cm. Por isso, a empresa precisa utilizar os Formatos menores que

são derivados das folhas matrizes (p.e., para a matriz S, a máquina é capaz de comportar

folhas do Formato 3 em diante).

Sendo assim, a modelagem deve considerar os principais formatos que a empresa utiliza

para montar os Planos de Impressão e Corte. Na Tabela 2 a seguir estão os 5 formatos

mais utilizados pela gráfica, com suas dimensões (Largura × Altura) em cent́ımetros. A

letra S ou G foi inclúıda após o nome do Formato para a identificação de sua folha matriz.

Tabela 2: Formatos das folhas mais utilizadas pela empresa.

Formato Dimensões (L × A)

3 S 32 × 66

4 S 48 × 33

6 S 32 × 33

8 G 28 × 38

9 S 32 × 22

Fonte: o Autor.



51

Em relação aos custos totais para rodar um pedido, eles podem ser divididos em duas

partes: custo de matéria-prima e custo de impressão. Ambas serão abordadas a seguir,

com a Tabela 3 compilando os custos para cada Formato.

O custo de matéria-prima está associado a quanto a empresa gasta por folha (de

acordo com o Formato pedido) em seus fornecedores. Para todos os formatos listados na

Tabela 3, considerou-se a mesma gramatura do papel (170 g) e o mesmo tipo de papel

(couché), para fins de padronização. Esta é uma consideração razoável na prática, já

que essa é a combinação de especificações mais utilizada para impressão dos pedidos na

empresa. De qualquer forma, o problema pode ser transposto a outras gramaturas e tipos,

já que as dimensões do papel permanecem as mesmas; o que irá variar é o custo por folha,

a depender do material escolhido.

Já o custo de impressão está relacionado à quanto a empresa gasta por folha (de

acordo com o Formato utilizado) para realizar a impressão de um lado do papel (uma

página). Nessa gráfica, esse custo é padronizado por uma unidade de medida que será

apresentada a seguir.

Na Tabela 3 a seguir estão consolidados os custos de matéria-prima e os custos de

impressão para cada um dos Formatos mais utilizados. Para a modelagem matemática do

problema, é interessante que os custos de cada Formato estejam expressos pela métrica

de custo por unidade de área ao invés do custo por folha. Essa métrica foi calculada

dividindo o custo total por folha pela área (em m2) de cada Formato.

Tabela 3: Custos de matéria-prima e de impressão para os Formatos mais utilizados.

Formato Matéria-prima Impressão Custo Total

# R$/Folha R$/Folha R$/Folha R$/m2

3 S 0,48 1,60 2,08 9,85

4 S 0,36 0,80 1,16 7,32

6 S 0,24 0,40 0,64 6,06

8 G 0,20 0,40 0,60 5,64

9 S 0,16 0,40 0,56 7,95

Fonte: o Autor.

A unidade de medida que padroniza o custo de impressão é o clique, conceito am-

plamente utilizado no setor gráfico. Ele é uma unidade de medida de área de impressão,
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que determina a quantidade de vezes que o sistema de gravação da imagem (um cinto,

ou belt, de impressão) necessita ser acionado para cobrir toda a extensão da folha, in-

dependentemente da área ocupada pelo(s) arquivo(s) impresso(s). Ou seja, o custo é o

mesmo se a folha possuir apenas um pequeno arquivo, ou se estiver repleta de arquivos;

o que importa, de fato, é quantas vezes esse sistema de gravação é acionado no processo

de impressão, que é determinado pela altura do Formato utilizado (a largura do Formato

não é relevante para definir o custo).

Logo, cada Formato exige um número de cliques diferente, pois folhas com maior

altura necessitam de mais rotações desse cinto de impressão para serem cobertas por

completo. Nessa gráfica, o custo do clique é padronizado em R$ 0,40. Ou seja, para

chegar no custo de impressão final, basta multiplicar o custo do clique pela quantidade

de cliques que cada Formato exige.

A Figura 26 a seguir ilustra como a relação de cliques para os formatos mais utilizados

é calculada para o equipamento que a empresa possui. Basicamente, o primeiro clique é

contabilizado até a altura de 38 cm. Depois dele, os próximos cliques são contabilizados a

cada avanço de 10 cm (ou seja, o segundo clique é contabilizado na altura 48 cm, o terceiro

na altura 58 cm, e assim por diante). Por isso a relação de cliques para os formatos mais

utilizados é: 4 (Formato 3 S), 2 (Formato 4 S), 1 (Formato 6 S), 1 (Formato 8 G), 1

(Formato 9 S).

Figura 26: Cálculo dos cliques para os formatos mais utilizados.

Fonte: o Autor.

Esse custo padronizado de R$ 0,40 está definido em um contrato entre a empresa

e a fabricante do equipamento. Na prática, a cada página impressa, o equipamento
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de impressão possui um sistema de contagem de cliques, que é acessado remotamente

pela fabricante. Mensalmente, uma cobrança é realizada pela fabricante com base na

quantidade de cliques do peŕıodo. Nesse valor estão inclusas a tinta (que é reposta à

medida que a gráfica realiza o pedido), as peças de reposição e as manutenções corretiva

e preventiva da máquina. Ou seja, a empresa é dona do equipamento (não é um contrato

de leasing) e paga uma taxa mensal proporcional à utilização para manter a máquina

operando.

3.2 Definição do Problema

Dada a extensa Fundamentação Teórica apresentada no Caṕıtulo 2, esta seção tem

como objetivo avaliar as caracteŕısticas do problema na prática, traçando um paralelo

com os conceitos apresentados. Para fins de padronização, define-se que a nomenclatura

dos Problemas de Corte e Empacotamento apresentada no Caṕıtulo 2 será utilizada: os

Formatos (3 S, 4 S, 6 S, 8 G e 9 S) serão denominados objetos, os arquivos enviados pelos

clientes (as imagens para impressão) serão denominados itens e as áreas inutilizadas na

impressão serão denominadas sobras.

Atualmente, a montagem do Plano de Impressão e Corte é feita manualmente por um

colaborador, que deve levar em consideração diversos fatores que serão abordados a seguir:

padrão de corte, orientação/posicionamento dos itens e geração das sobras. O principal

objetivo deste colaborador é selecionar o conjunto de objetos que apresentem o menor

custo para a operação, conseguindo alocar todos os itens que precisam ser impressos.

Portanto, estamos falando de um Plano bidimensional com itens e objetos retangulares.

Além disso, os itens a serem empacotados são muito heterogêneos entre os pedidos

(já que podem assumir qualquer dimensão), o que gera uma complexidade ainda maior

na montagem, pois, a cada pedido, um novo Plano precisa ser elaborado sem seguir um

padrão pré-estabelecido. Os objetos, todavia, não apresentam essa heterogeneidade, já

que são apenas 5 Formatos padronizados.

Ou seja, seguindo a tipologia de WÄSCHER et al. (2007), vemos que o problema

é um 2D-R-MBSBPP, já que é caso bidimensional com itens retangulares do Multiple

Bin Size Bin Packing Problem, por ser um problema de minimização das entradas (dos

custos), com um sortimento fortemente heterogêneo de itens, mas fracamente heterogêneo

de objetos. A seguir, veremos outras caracteŕısticas relevantes do problema na prática,

que ajudarão a definir as principais variáveis e restrições da modelagem.
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Como a montagem do Plano de Impressão e Corte é feita manualmente, percebe-se

que há espaço para otimizar esse problema complexo na operação da empresa, com o

intuito de reduzir os custos operacionais de maneira consistente. A Figura 27 a seguir,

originada de uma demanda real da gráfica (a qual necessitava imprimir 60 itens), evidencia

que uma simples alteração na rotação de um item permite que um aproveitamento melhor

seja obtido, consequentemente utilizando menos objetos, resultando em um custo menor

para executar o pedido. Para os mesmos tamanhos de objeto e item, o cenário à esquerda

alocou apenas 3 itens, enquanto o da direita conseguiu alocar 4 itens. Nesse pedido de

60 itens, o cenário à esquerda utilizaria 20 objetos, enquanto o cenário à direita utilizaria

apenas 15.

Figura 27: Exemplo de como a montagem do Plano influencia na quantidade de folhas
utilizadas.

Fonte: o Autor.

Além disso, na gráfica estudada todos os cortes em papel são guilhotinados (Figura

10) e os itens são empacotados ortogonalmente (Figura 9), por dois principais motivos:

precisão nos cortes e agilidade. Precisão porque esse padrão permite que os cortes sejam

realizados de uma ponta a outra da folha sem interrupções, e, portanto, sem correr o

risco de cortar um arquivo impresso que estaria na linha do corte. Agilidade porque
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a empresa utiliza uma guilhotina elétrica, que está representada na Figura 28 a seguir.

Este equipamento permite que os cortes sejam muito mais ágeis do que uma refiladora,

a outra opção dispońıvel no setor gráfico (que, dependendo do modelo, consegue lidar de

certa forma com os cortes não-guilhotinados). Com os itens posicionados ortogonalmente

seguindo o padrão guilhotinado, basta alinhar a base da Folha e definir a altura desejada

do corte.

Figura 28: Guilhotina elétrica utilizada pela empresa.

Fonte: o Autor.

Outra condição importante por conta da produtividade nos cortes é o empacotamento

dos itens em ńıveis, respeitando os cortes em no máximo 2 estágios (Figura 11), com a

retirada de sobras (trimming) permitida. Ou seja, este é um caso não-exato dos Pro-

blemas de Corte e Empacotamento Bidimensional. O número de ńıveis também é uma

preocupação relevante durante a montagem do Plano: é interessante concentrar os itens

no menor número de ńıveis posśıvel, já que isso significa uma economia de tempo no

momento dos cortes.
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Em relação à orientação dos arquivos dentro da folha de impressão, eles podem assumir

as orientações tanto paisagem quanto retrato. No setor gráfico, estes são os termos mais

utilizados para descrever a orientação de um item: paisagem é quando a largura do item é

maior que a altura; retrato é quando a altura é maior do que a largura. Ou seja, estamos

tratando de um padrão não-orientado (que permite a rotação dos itens em 90°), como já

visto na Figura 13 anteriormente.

No que se refere às sobras geradas pelos cortes dessas folhas, elas não são aproveitáveis

para a gráfica por dois principais motivos: processo trabalhoso e incertezas nas demandas.

Em relação ao processo, trabalhar com sobras não é uma tarefa trivial, pois isso exige

diversas preparações extras na máquina de impressão, que dificultam o processo e conso-

mem mais tempo da produção. Esses ajustes são tanto f́ısicos (na bandeja de impressão),

quanto digitais (configurações no software de impressão). Já em relação aos pedidos, eles

variam bastante entre as ordens de impressão. Por isso, a definição das dimensões de

uma sobra aproveitável seria muito imprecisa. Além disso, não haveria garantia de que

ela seria utilizada, gerando um estoque improdutivo na empresa.

Por fim, sabe-se que na operação atual a montagem dos Planos de Impressão e Corte é

feita o mais rapidamente posśıvel, por conta dos prazos curtos de entrega. Ou seja, não é

posśıvel estender a janela de tempo da montagem dos Planos por um longo peŕıodo, apenas

em algumas horas (o que já é suficiente para agregar alguns pedidos para a produção).

Dessa forma, o objetivo da modelagem, assim como os principais parâmetros, variáveis

e restrições relevantes são apresentados a seguir.

Objetivo da Modelagem:

• Alocar os itens no conjunto de objetos que apresentar o menor custo total, priori-

zando as soluções com o menor número de ńıveis posśıvel.

Parâmetros do Problema:

• Quantidade de itens e de objetos.

• Dimensões dos itens e dos objetos.

• Custo/área dos objetos.

• Orientação dos itens.
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Variáveis do Problema:

• Indicar se um objeto é utilizado (ou não).

• Indicar se um item utilizado foi rotacionado (ou não).

Restrições do Problema:

• Os itens alocados em um objeto não podem ultrapassar o limite de altura do mesmo.

• Os itens alocados em um objeto não podem ultrapassar o limite de largura do

mesmo.

• Os itens não podem se sobrepor.

• A demanda dos itens deve ser atendida.

• Um item não pode ser cortado mais de uma vez.

• A quantidade de objetos dispońıveis deve ser respeitada (a quantidade de cada

Formato é finita, sujeita a disponibilidade na gráfica).
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4 MODELAGEM DO PROBLEMA

Neste caṕıtulo são apresentados os modelos matemáticos desenvolvidos para auxiliar a

gráfica na montagem dos Planos de Impressão e Corte. Os modelos são extensões diretas

dos modelos apresentados em ANDRADE et al. (2016), que, por sua vez, são fortemente

inspirados no trabalho desenvolvido em LODI e MONACI (2003), que trata sobre um

Knapsack Problem bidimensional com corte em dois estágios.

As principais contribuições da presente modelagem proposta foram a inclusão da pos-

sibilidade de rotação dos itens para simular as condições reais da gráfica e a inclusão de

um critério de desempate das soluções ótimas para gerar o menor número de ńıveis (e,

portanto, cortes) posśıvel, impactando no tempo de execução das ordens de serviço.

Em relação à organização do caṕıtulo, ele está dividido em três partes principais: a

apresentação das definições e notação, o desenvolvimento dos modelos sem o critério de

desempate (sem e com rotação dos itens) e o desenvolvimento dos modelos com o critério

de desempate (sem e com rotação dos itens). A estrutura simplificada do caṕıtulo pode

ser observada na Figura 29 a seguir.

Figura 29: Estrutura do Caṕıtulo 4.

Fonte: o Autor.
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4.1 Definições e Notação

Inicialmente, vale relembrar que existe uma nomenclatura padrão de alguns termos

sempre presentes nesse tipo de problema. Os itens são os corpos pequenos, que precisam

ser empacotados/cortados. Já os objetos são os corpos grandes, nos quais os itens peque-

nos serão alocados. No caso do problema estudado, os itens são os arquivos enviados pelos

clientes da gráfica, que devem ser alocados no conjunto de objetos que a gráfica possui,

ou seja, os cinco formatos dispońıveis de folhas (conforme Tabela 2).

Consideram-se p objetos retangulares, onde cada objeto l possui uma largura Wl e

altura Hl; além disso, como já visto na Tabela 3, cada objeto possui um custo/área cl

(l = 1, ..., p) definido. Em relação aos itens, considera-se n itens retangulares, onde cada

item i possui largura wi e altura hi (i = 1, ..., n). Os itens devem ser alocados seguindo o

padrão guilhotinado de corte.

Sem perda de generalidade, assume-se que h1 ≥ h2 ≥ ... ≥ hn. Além disso, assim

como em ANDRADE et al. (2016), assume-se que os cortes nos objetos são infinitamente

finos; caso contrário, considera-se que a espessura da lâmina de corte já foi adicionada às

dimensões dos objetos e itens, sem perda de generalidade (GILMORE; GOMORY, 1965),

(MORABITO; ARENALES, 2000). Por fim, assume-se que todas as dimensões de itens e

objetos e as unidades de custo/área são números inteiros. Isso não é uma suposição muito

restritiva para lidar com as instâncias do problema na prática, porque a precisão finita das

ferramentas de corte e medição (no máximo em miĺımetros), bem como a precisão finita

usada no Real (no máximo em centavos), a moeda considerada para definir os custos dos

objetos, significa que as suposições podem ser facilmente satisfeitas por uma mudança de

escala.

Em ambos modelos, sem e com critério de desempate, utiliza-se a variável binária ul

(l = 1, ..., p), que indica se o objeto l é utilizado ou não:

ul =

1, se o objeto l é usado

0, caso contrário
(4.1)

Além de ul, em ambos modelos, utiliza-se outra variável binária, a xikl (k = 1, ..., n,

i = k, ..., n, l = 1, ..., p), que indica se o item i não-rotacionado é alocado (ou não) no

ńıvel k do objeto l:
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xikl =

1, se o item i não-rotacionado está no ńıvel k do objeto l

0, caso contrário
(4.2)

O item i não-rotacionado indica que ele será alocado da forma como ele for declarado

para o modelo, ou seja, não haverá a possibilidade de rotação.

Porém, nos modelo com rotações, utiliza-se também a variável binária yikl (k = 1, ..., n,

i = k, ..., n, l = 1, ..., p), que indica se o item i rotacionado é alocado (ou não) no ńıvel k

do objeto l:

yikl =

1, se o item i rotacionado está no ńıvel k do objeto l

0, caso contrário
(4.3)

O item i rotacionado indica que ele será alocado com uma rotação de 90° em relação à

maneira como foi declarado para o modelo, na qual a sua dimensão ao longo da largura do

objeto passa a ser a sua altura, e vice-versa (ou seja, a sua dimensão ao longo da altura do

objeto passa a ser a sua largura): p.e., se temos um item i que foi declarado com largura

de 15 cm e altura de 10 cm, no cenário em que ele é rotacionado a sua altura passa a ser

15 cm e a sua largura passa a ser 10 cm.

A solução adotada para respeitar o padrão de cortes guilhotinados foi a adoção de

ńıveis. Seguindo a terminologia utilizada em LODI e MONACI (2003) que foi apresentada

no Caṕıtulo 2, dado um objeto l, um ńıvel é definida como uma faixa do objeto com largura

Wl e altura igual à altura do item mais alto alocado nela.

Nos modelos propostos, considera-se que pode haver no máximo n ńıveis, cada um

definido por um item i, com sua parte inferior sempre no chão do ńıvel. O ı́ndice de cada

ńıvel é definido como o ı́ndice do primeiro item alocado nele, como pode ser observado na

Figura 30 a seguir.

Ou seja, um ńıvel k está aberto (ou utilizado) se o item k for o item de menor ı́ndice

alocado nele. Nesse caso, todo ńıvel aberto é representada por xkkl = 1 ou ykkl = 1

(dependendo se o item está rotacionado ou não), já que, nesse caso, o ı́ndice do item que

abriu o ńıvel torna-se o próprio ı́ndice do ńıvel.
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Figura 30: Representação dos ı́ndices de ńıveis abertos.

Fonte: o Autor.

Por fim, vale ressaltar que qualquer padrão ótimo de corte em dois estágios tem uma

solução equivalente na qual o item de maior altura em cada ńıvel é o primeiro item

colocado à esquerda desse ńıvel. Ambos modelos seguem essa lógica, sempre alocando

o item de maior altura do ńıvel à esquerda. Dessa forma, os cortes sempre respeitam o

padrão de corte guilhotinado em dois estágios (mais o trimming se for necessário).

O último conceito abordado em ambos modelos é o agrupamento de itens em tipos,

introduzido por ANDRADE et al. (2016). Um tipo é definido pela combinação das di-

mensões de largura e altura dos itens: toda vez que uma nova combinação é identificada,

surge um novo tipo. Em outras palavras, se houver 10 itens para serem alocados, cada um

com dimensões diferentes entre si, teremos 10 tipos distintos. Caso existam 5 itens com

dimensões idênticas (10 × 15) e outros 5 itens com dimensões idênticas (5 × 9), teremos 2

tipos. Além disso, é relevante observar que itens com dimensões iguais, mas rotacionados,

são considerados tipos distintos. Portanto, se possúımos 2 itens, um com dimensões 13 ×
18 e outro com dimensões 18 × 13, teremos dois tipos diferentes.

Assume-se que existemm tipos diferentes de itens, que terão seus ı́ndices armazenados

em uma lista α, com α0 = 0 e αj sendo igual ao último ı́ndice dos itens do j-ésimo tipo.

Isso significa que os ı́ndices dos itens do tipo j variam de αj−1 + 1 a αj. Por exemplo, se

há dez itens do tipo 1 e cinco itens do tipo 2, então, α1 = 10 e α2 = 15, já que o valor

de αj é igual ao maior ı́ndice do item do tipo j, uma vez que os itens do mesmo tipo são

numerados de forma consecutiva. Ou seja, os itens 1, 2, . . ., 10 são todos do tipo 1 (e,
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portanto, α1 = 10), enquanto os itens 11, 12, . . ., 15 são todos do tipo 2 (e, portanto,

α2 = 15).

A Tabela 4 a seguir resume a notação utilizada nos modelos matemáticos, indicando

os ı́ndices, parâmetros e as variáveis de decisão (que, no caso dos quatro modelos, são

todas binárias):

Tabela 4: Notação dos modelos matemáticos

Índices

i Índice do item

k Índice do ńıvel

l Índice do objeto

j Índice do tipo do item

αj Índice do último item do j-ésimo tipo

n Quantidade total de itens

p Quantidade total de objetos

m Quantidade total de tipos de itens

Parâmetros

wi Largura do item i

hi Altura do item i

wk Largura do ńıvel k

hk Altura do ńıvel k

Wl Largura do objeto l

Hl Altura do objeto l

cl Custo/área do objeto l

Variáveis de Decisão (binárias)

ul Indica se o objeto l é utilizado (1), ou não (0)

xikl Indica se o item i não-rotacionado é alocado no ńıvel k no objeto l (1),

ou não (0)

yikl Indica se o item i rotacionado é alocado no ńıvel k no objeto l (1), ou não

(0)

Fonte: o Autor.
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4.2 Modelos sem Critério de Desempate

Os modelos apresentados nessa seção não possuem o critério de desempate desenvol-

vido para priorizar as soluções que geram o menor número de ńıveis. A seguir, os modelos

sem possibilidade de rotação (Modelo S) e com possibilidade de rotação (Modelo R) são

apresentados.

4.2.1 Modelo S - Sem Rotação

Omodelo sem rotação e sem critério de desempate desenvolvido pelo presente trabalho

pode ser escrito como um modelo de Programação Linear Inteira:

min

p∑
l=1

clWlHlul (4.4)

s.a.
n∑

k=1

hkxkkl ≤ Hlul l = 1, . . . , p (4.5)

n∑
i=k+1

wixikl ≤ (Wl − wk)xkkl k = 1, . . . , n, l = 1, . . . , p (4.6)

p∑
l=1

i∑
k=1

xikl = 1 i = 1, . . . , n (4.7)

p∑
l=1

xk+1,k+1,l ≤
p∑

l=1

xkkl j = 1, . . . ,m, k ∈ [αj−1 + 1, αj − 1] (4.8)

p∑
l=1

αj∑
i=k+2

xi,k+1,l ≤
p∑

l=1

αj∑
i=k+1

xikl j = 1, . . . ,m, k ∈ [αj−1 + 1, αj − 1] (4.9)

ul ∈ {0, 1} l = 1, . . . , p (4.10)

xikl ∈ {0, 1} k = 1, . . . , n, i = k, . . . , n, l = 1, . . . , p (4.11)

A função objetivo (4.4) minimiza o custo total dos objetos utilizados. As restrições

(4.5) garantem que, para cada objeto utilizado, a soma das alturas dos ńıveis abertos

não seja maior do que a altura do objeto; além disso, garantem que os ńıveis abertos

sejam atribúıdos apenas a objetos utilizados. As restrições (4.6) garantem que, para cada

objeto, a soma das larguras dos itens alocados a cada ńıvel não seja maior do que a largura

do objeto, e que um item só pode ser alocado a um ńıvel se o ńıvel estiver aberto. As

restrições (4.7) asseguram que a demanda de cada item seja atendida. As restrições (4.8)

e (4.9) servem para eliminar simetrias de itens idênticos (i.e., de um mesmo tipo). As
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restrições (4.8) estabelecem que um item que não é o primeiro de seu tipo só pode abrir

um ńıvel se o item anterior (do mesmo tipo) também abrir um ńıvel. As restrições (4.9)

estabelecem que, se dois itens consecutivos k e k+1 do tipo j abrirem um ńıvel, o número

de itens do tipo j no ńıvel k+ 1 deve ser menor ou igual ao número de itens do tipo j no

ńıvel k. As restrições (4.10) e (4.11) definem o domı́nio das variáveis ul e xikl.

4.2.2 Modelo R - Com Rotação

Omodelo com rotação e sem critério de desempate desenvolvido pelo presente trabalho

pode ser escrito como um modelo de Programação Linear Inteira:

min

p∑
l=1

clWlHlul (4.12)

s.a.
n∑

k=1

(hkxkkl + wkykkl) ≤ Hlul l = 1, . . . , p (4.13)

n∑
i=k+1

(wixikl + hiyikl) ≤ (Wl − wk)xkkl + (Wl − hk)ykkl k = 1, . . . , n, l = 1, . . . , p

(4.14)

p∑
l=1

i∑
k=1

(xikl + yikl) = 1 i = 1, . . . , n (4.15)

p∑
l=1

(xk+1,k+1,l + yk+1,k+1,l) ≤
p∑

l=1

(xkkl + ykkl) j = 1, . . . ,m,

k ∈ [αj−1 + 1, αj − 1]

(4.16)

p∑
l=1

αj∑
i=k+2

(xi,k+1,l + yi,k+1,l) ≤
p∑

l=1

αj∑
i=k+1

(xikl + yikl) j = 1, . . . ,m,

k ∈ [αj−1 + 1, αj − 1]

(4.17)

(hkxkkl + wkykkl) ≥ (hk′xk′,k,l + wk′yk′,k,l) l = 1, . . . , p, k = 1, . . . , n,

k′ = k + 1, . . . , n (4.18)

ul ∈ {0, 1} l = 1, . . . , p (4.19)

xikl ∈ {0, 1} k = 1, . . . , n, i = k, . . . , n,

l = 1, . . . , p (4.20)

yikl ∈ {0, 1} k = 1, . . . , n, i = k, . . . , n,

l = 1, . . . , p (4.21)
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A função objetivo (4.12) minimiza o custo total dos objetos utilizados. As demais

restrições também são equivalentes ao modelo sem rotação, porém, com a adição da

variável binária y que representa os itens rotacionados. Como as restrições (4.15) garantem

que um item só pode assumir apenas uma orientação, então, basta adicionar a variável

binária y na formulação.

Caso haja alguma operação de multiplicação, então, basta acompanhar a variável y

com a dimensão oposta àquela que acompanha x (p.e., se altura acompanha a variável

x como em hkxkkl, então, basta trocar altura por largura quando multiplicarmos por y,

resultando em wkykkl). Isso se deve ao fato de que cada item rotacionado compartilha

as mesmas dimensões de largura e altura que o item não-rotacionado correspondente,

com os valores invertidos: a largura do item rotacionado é equivalente à altura do item

não-rotacionado, e vice-versa (a altura do item rotacionado é igual à largura do item

não-rotacionado).

Logo, as restrições (4.13) garantem que, para cada objeto utilizado, a soma das alturas

dos ńıveis abertos, tanto por itens rotacionados ou não-rotacionados, não seja maior do

que a altura do objeto; além disso, garantem que os ńıveis abertas sejam atribúıdas

apenas a objetos utilizados. As restrições (4.14) garantem que, para cada objeto, a soma

das larguras dos itens, rotacionados ou não-rotacionados, alocados a cada ńıvel não seja

maior do que a largura do objeto; além disso, garantem que um item, tanto rotacionado

quanto não-rotacionado, só pode ser alocado a um ńıvel se a mesma estiver aberta. As

restrições (4.15) asseguram que o item só pode assumir uma orientação e que a demanda

por ele seja atendida. As restrições (4.16) e (4.17) servem para eliminar simetrias de

itens do mesmo tipo, sejam eles rotacionados ou não-rotacionados. As restrições (4.16)

estabelecem que, se um item que não é o primeiro de seu tipo só pode abrir um ńıvel se o

item anterior (do mesmo tipo) também abrir um ńıvel. As restrições (4.17) estabelecem

que, se dois itens consecutivos k e k+1 do tipo j abrirem um ńıvel, o número de itens do

tipo j no ńıvel k+1 deve ser menor ou igual ao número de itens do tipo j no ńıvel k. As

restrições (4.18) garantem que os itens estão ordenados da maior para a menor altura em

um ńıvel aberto (i.e., o primeiro item alocado em um ńıvel é o que possui a maior altura

daquele ńıvel; o próximo item possui a segunda maior altura, e assim por diante); essas

restrições foram outra contribuição do presente trabalho para tornar posśıvel a rotação

dos itens, já que não havia nenhuma restrição no modelo original que limitava a altura

dos itens em um ńıvel (dado que os itens estavam ordenados por alturas decrescentes).

As restrições (4.19), (4.20) e (4.21) definem o domı́nio das variáveis ul, xikl e yikl.
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4.3 Modelos com Critério de Desempate

Nesta seção, o critério de desempate desenvolvido para priorizar as soluções que geram

o menor número de ńıveis é apresentado para os dois modelos, sem (Modelo SD) e com

possibilidade de rotação (Modelo RD).

4.3.1 Critério de Desempate

O critério de desempate foi uma adição em relação aos modelos S e R que o presente

trabalho desenvolveu para lidar com casos em que a solução encontrada pelo modelo alo-

cava os itens em múltiplos ńıveis, sendo que era posśıvel alocá-los em uma quantidade

menor de ńıveis, mantendo o mesmo valor (de custo dos objetos) da solução previamente

encontrada. Ou seja, o critério serve apenas para desempatar as melhores soluções encon-

trados, priorizando a solução que fornece o menor número de ńıveis; logo, ele não altera

o valor de custo de uma instância.

A Figura 31 a seguir representa os dois cenários, sem critério de desempate (a) e com

o critério (b). É posśıvel notar que, no cenário sem o critério, os itens foram alocados

em 6 ńıveis, enquanto no outro cenário apenas 2 ńıveis foram abertos. Isso resultou, no

exemplo abaixo, em uma diferença de 4 cortes: 12 cortes seriam necessários para separar

os itens no cenário (a), enquanto apenas 8 seriam necessários no cenário (b). A diferença

se deu por conta dos cortes de primeiro estágio: no cenário (a), 6 cortes foram necessários

(um para cada ńıvel); já no cenário (b), apenas 2 cortes foram necessários.

Figura 31: Representação dos cenários sem e com critério de desempate.

Fonte: o Autor.
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O desenvolvimento desse critério de desempate para as soluções ótimas é pertinente

por dois principais motivos: redução do tempo de corte na guilhotina e redução do des-

perd́ıcio de papel na gráfica.

O primeiro motivo para a introdução do critério de desempate é a otimização do

tempo de corte na guilhotina. Quando os itens são alocados em múltiplos ńıveis sem

critério de desempate, isso pode resultar em mais cortes na guilhotina, pois cada ńıvel

representa uma etapa de corte separada. Ao implementar o critério de desempate, que

busca minimizar o número de ńıveis utilizados, é posśıvel reduzir o número de cortes

necessários na guilhotina, especialmente quando os itens alocados em um ńıvel possuem

a mesma altura (sem a necessidade de trimming).

Isso se traduz em economia de tempo durante o processo de produção, pois menos

cortes significam uma produção mais eficiente e rápida. De acordo com o que foi coletado

presencialmente na gráfica pelo Autor, o tempo médio de corte na empresa (considerando

a medição do tamanho do ńıvel, o ajuste do papel na bancada, a preparação da guilhotina e

o corte em si) é de 30 segundos. Logo, cada corte economizado se traduz em uma economia

média de 30 segundos no tempo de produção. No exemplo da Figura 31, a economia seria

de 2 minutos, em apenas 1 folha.

O segundo motivo importante para a introdução do critério de desempate é a redução

do desperd́ıcio de papel. Quando os itens são alocados em um maior número de ńıveis, há

uma maior probabilidade de haver espaço não utilizado em cada ńıvel, o que resulta em

um desperd́ıcio de papel. Ao utilizar o critério de desempate para minimizar o número

de ńıveis, os itens são alocados de maneira mais eficiente, ocupando o espaço dispońıvel

de forma mais otimizada. Isso leva a uma redução significativa no desperd́ıcio de papel,

já que as sobras podem ser reutilizadas como papéis de rascunho para os colaboradores,

o que é economicamente vantajoso e ambientalmente responsável.

4.3.2 Modelos SD e RD

O critério de desempate está inserido na função objetivo como uma parcela adicional

à formulação inicial de cada modelo, S e R. Portanto, a única diferença na modelagem é

a adição do critério de desempate, com as restrições continuando exatamente iguais.

O modelo sem rotação e com critério de desempate (SD) pode ser obtido apenas

alterando a função objetivo (4.4) pela função objetivo (4.22) a seguir:
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min

p∑
l=1

clWlHlul +

p∑
l=1

n∑
k=1

xkkl

Hl

min
i=1,...,n

{wi, hi}

(4.22)

A função objetivo (4.22) minimiza o custo total dos objetos utilizados, priorizando

a solução que forneça o menor número de ńıveis posśıvel. A primeira parcela é idêntica

à da expressão (4.4). A segunda parcela indica o critério de desempate das soluções,

que prioriza o menor número de ńıveis (somatório de todos os xkkl), dentre a quantidade

máxima posśıvel de ńıveis de cada objeto (obtida através da divisão entre a altura Hl

do objeto l pelo item com a menor dimensão posśıvel, seja wi ou hi, já que, nesse caso,

retornaria o maior valor posśıvel de ńıveis).

Já o modelo com rotação e com critério de desempate (RD) pode ser obtido apenas

alterando a função objetivo (4.12) pela função objetivo (4.23) a seguir:

min

p∑
l=1

clWlHlul +

p∑
l=1

n∑
k=1

xkkl + ykkl

Hl

min
i=1,...,n

{wi, hi}

(4.23)

A função objetivo (4.23) minimiza o custo total dos objetos utilizados, priorizando a

solução que forneça o menor número de ńıveis posśıvel. A diferença em relação ao modelo

sem rotação é a adição da variável ykkl na parcela de critério de desempate, já que, agora,

é posśıvel que um item rotacionado abra um ńıvel.
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5 TESTES COMPUTACIONAIS E ANÁLISES

Neste caṕıtulo são apresentadas as principais informações relacionadas aos testes com-

putacionais realizados para testar os modelos desenvolvidos, bem como as análises rea-

lizadas sobre os resultados. O objetivo é apresentar o conjunto de instâncias que foram

coletadas da operação diária da gráfica, comparando as soluções obtidas pelos modelos

com as soluções adotadas na prática. Apenas relembrando, atualmente a empresa não pos-

sui nenhuma ferramenta que a auxilie no processo de montagem dos Planos de Impressão

e Corte.

Em relação à organização do caṕıtulo, ele está dividido em três seções: declaração

das instâncias para teste, resultados obtidos e análises. A estrutura do caṕıtulo pode ser

observada na Figura 32 a seguir.

Figura 32: Estrutura do Caṕıtulo 5.

Fonte: o Autor.
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5.1 Instâncias

A Tabela 5 descreve as 20 instâncias testadas: a coluna p indica o número de objetos

considerados, n indica o número de itens e as colunas L × A indicam as dimensões.

Tabela 5: Instâncias utilizadas nos testes computacionais.

Inst. Objetos Itens

# p L × A n L × A

1 30 6(32 × 66), 6(33 × 48), 6(32 × 33), 6(28 × 38),

6(22× 32)

7 1(40× 25), 2(30× 20), 2(60× 30), 2(40× 30)

2 15 3(32 × 66), 3(33 × 48), 3(32 × 33), 3(28 × 38),

3(22× 32)

6 3(15× 10), 2(18× 13), 1(20× 15)

3 25 5(32 × 66), 5(33 × 48), 5(32 × 33), 5(28 × 38),

5(22× 32)

9 1(9×5), 1(9×6), 1(12×9), 1(15×10), 1(21×15),

1(18× 13), 1(25× 20), 1(30× 20), 1(40× 20)

4 45 9(32 × 66), 9(33 × 48), 9(32 × 33), 9(28 × 38),

9(22× 32)

16 10(30× 10), 2(30× 21), 2(28× 22), 2(30× 30)

5 20 4(32 × 66), 4(33 × 48), 4(32 × 33), 4(28 × 38),

4(22× 32)

16 8(9× 6), 2(7× 5), 6(5× 5)

6 40 8(32 × 66), 8(33 × 48), 8(32 × 33), 8(28 × 38),

8(22× 32)

12 5(30× 20), 4(21× 15), 3(15× 10)

7 30 6(32 × 66), 6(33 × 48), 6(32 × 33), 6(28 × 38),

6(22× 32)

19 8(9× 6), 6(21× 15), 4(7× 7), 1(21× 10)

8 20 4(32 × 66), 4(33 × 48), 4(32 × 33), 4(28 × 38),

4(22× 32)

19 12(6× 5), 5(20× 5), 2(30× 10)

9 20 4(32 × 66), 4(33 × 48), 4(32 × 33), 4(28 × 38),

4(22× 32)

18 5(8× 10), 6(10× 10), 5(5× 20), 2(10× 15)

10 60 12(32×66), 12(33×48), 12(32×33), 12(28×38),

12(22× 32)

30 10(30× 10), 6(42× 30), 4(21× 15), 10(30× 21)

11 55 11(32×66), 11(33×48), 11(32×33), 11(28×38),

11(22× 32)

21 3(28 × 22), 1(43 × 28), 4(22 × 14), 2(20 × 15),

5(21× 10), 6(15× 10)

12 50 10(32×66), 10(33×48), 10(32×33), 10(28×38),

10(22× 32)

25 5(12 × 9), 5(15 × 10), 5(20 × 15), 5(18 × 13),

5(25× 20)

13 40 8(32 × 66), 8(33 × 48), 8(32 × 33), 8(28 × 38),

8(22× 32)

19 2(6×5), 2(9×6), 4(9×9), 8(18×10), 3(30×21)

14 30 6(32 × 66), 6(33 × 48), 6(32 × 33), 6(28 × 38),

6(22× 32)

24 18(15× 10), 6(30× 30)

15 70 14(32×66), 14(33×48), 14(32×33), 14(28×38),

14(22× 32)

28 2(15× 10), 3(21× 10), 23(30× 10)

16 45 9(32 × 66), 9(33 × 48), 9(32 × 33), 9(28 × 38),

9(22× 32)

25 5(28× 22), 10(9× 5), 10(18× 13)

17 35 7(32 × 66), 7(33 × 48), 7(32 × 33), 7(28 × 38),

7(22× 32)

30 10(30× 10), 20(9× 5)

18 35 7(32 × 66), 7(33 × 48), 7(32 × 33), 7(28 × 38),

7(22× 32)

30 10(20× 15), 8(10× 8), 12(9× 5)

19 25 5(32 × 66), 5(33 × 48), 5(32 × 33), 5(28 × 38),

5(22× 32)

42 30(6× 6), 8(5× 20), 4(7× 7)

20 25 5(32 × 66), 5(33 × 48), 5(32 × 33), 5(28 × 38),

5(22× 32)

50 15(9× 6), 30(5× 5), 5(20× 5)

Fonte: o Autor.
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É posśıvel observar que as instâncias possuem um caráter fortemente heterogêneo

de itens, com dimensões e quantidades variadas. O conjunto de objetos possui sempre

as mesmas dimensões (os 5 Formatos já apresentados), por isso, apresenta um caráter

fracamente heterogêneo.

A quantidade de objetos para teste foi obtida através de um cálculo rápido com a

equipe da gráfica, buscando a quantidade mı́nima de objetos do Formato 9 S (22 × 32)

que comportasse todos os itens daquela instância. Essa quantidade, então, foi replicada

para os demais Formatos. Esse procedimento de buscar a quantidade de folhas do formato

9 S para atender o pedido é uma prática comum na gráfica, já que é a folha mais utilizada

pela empresa na operação atual. O principal motivo levantado para essa escolha é que o

seu custo/folha é o mais baixo entre as opções, além de ser o Formato mais abundante no

estoque. A Seção 5.3 irá abordar algumas análises para avaliar se essa preferência pelo

Formato 9 S é adequada.

A Tabela 6 a seguir resume as soluções adotadas pela gráfica na prática, para cada

instância. As colunas representam a quantidade de objetos escolhidos de cada Formato

que a empresa utilizou para atender as instâncias, bem como a quantidade total de objetos

e um cálculo do custo total de cada instância.

Tabela 6: Objetos escolhidos pela gráfica para solucionar as instâncias.

Inst. Solução adotada pela gráfica

# 3 S 4 S 6 S 8 G 9 S Total (R$)

1 2 4 8,80

2 3 1,68

3 3 3,48

4 2 9 6,32

5 1 1,16

6 8 4,48

7 2 3 4,00

8 1 2 2,28

9 4 2,24

10 2 6 12 17,84

11 2 5 3 7,00

12 1 1 10 6,84

13 1 2 2 5,52

14 3 5 9,04

15 14 7,84

16 9 5,04

17 2 2 5,28

18 6 1 4,16

19 3 1,92

20 1 1 1 2,36

Fonte: o Autor.
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É posśıvel observar que as soluções adotadas pela gráfica concentram-se em dois obje-

tos principalmente: o Formato 4 S e o Formato 9 S. Os outros Formatos foram escolhidos

em poucas situações. O custo total de todas soluções na prática foi de R$ 107,28.

5.2 Resultados

Os testes dos quatro modelos de otimização propostos neste trabalho foram realizados

utilizando um computador pessoal com as seguintes especificações: processador 13th Gen

Intel(R) Core(TM) i5-13400F @ 2.5 GHz, 16 GB de memória RAM, placa de v́ıdeo de

8 GB e Windows 10 como o sistema operacional. Essas especificações são semelhantes

às máquinas que a empresa possui, e, por isso, representam um cenário viável para a

aplicação da solução. A aplicação foi desenvolvida em Python 3.11, com o Gurobi 10.0

sendo o resolvedor de propósito geral utilizado.

Para fins de padronização a respeito da apresentação dos resultados, a Tabela 7 a

seguir resume as siglas utilizadas para cada um dos modelos desenvolvidos, como já apre-

sentado no Caṕıtulo 4 anteriormente.

Tabela 7: Siglas dos 4 modelos.

Modelo Sigla

Modelo sem Rotação, sem Critério de Desempate S

Modelo sem Rotação, com Critério de Desempate SD

Modelo com Rotação, sem Critério de Desempate R

Modelo com Rotação, com Critério de Desempate RD

Fonte: o Autor.

Antes de apresentar os resultados dos testes vale destacar que, para fins de padro-

nização, as tabelas que serão apresentadas na sequência apresentam indicadores comuns,

que seguem a mesma estrutura:

1. F.O.: representa o valor da função objetivo ao final dos procedimentos de otimização

realizados pelo Gurobi, ou seja, o custo total da instância que o modelo buscou

minimizar.
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2. GAP (%): indica o quão distante da solução ótima está a melhor solução fact́ıvel

encontrada pelo resolvedor. Ou seja, representa a diferença entre o valor da função

objetivo encontrado pelo resolvedor (dentro dos parâmetros estabelecidos) e o me-

lhor valor posśıvel (neste caso, um limitante inferior) que o resolvedor calculou.

Portanto, se o valor for 0, isso indica que aquela instância chegou até o valor ótimo.

3. Tempo (s): indica em quantos segundos o resolvedor chegou na solução ótima;

caso não tenha chegado na solução ótima, ela apresentará o tempo máximo de 900s

estabelecido pelo Autor para os testes. Este valor está próximo do tempo que os

colaboradores da gráfica levam para preparar o Plano de Impressão e Corte e o

setup do equipamento atualmente, portanto, é um tempo adequado para limitar os

modelos. Além de ser um indicador relevante para avaliar o esforço computacional

para resolver cada instância, ele também dá dimensão da posśıvel economia de tempo

na montagem dos Planos.

4. Nós: indica quantos nós da árvore do Branch-and-Bound (B&B) foram explorados

pelo Gurobi durante o processo de otimização. Esse indicador é relevante para

avaliar o esforço computacional para resolver cada instância.

5. Iterações: indica quantas iterações do método utilizado pelo resolvedor (estratégia

Branch-and-Cut) foram realizadas pelo Gurobi durante o processo de otimização.

Esse indicador também é relevante para avaliar o esforço computacional para resolver

cada instância.

6. Nı́veis: indica em quantos ńıveis (no total) a solução encontrada pelo Gurobi alo-

cou os itens, ou seja, essa coluna soma a quantidade de ńıveis para todos os objetos

utilizados. Esse indicador é importante para avaliar o impacto do critério de desem-

pate.

7. Objetos: esse conjunto de colunas indica a quantidade de objetos utilizados na

solução encontrada para cada Formato. Essa série de colunas é relevante para

avaliar as diferenças entre a solução encontrada pelo modelo e a solução adotada na

prática pela gráfica.

As Tabelas 8, 9, 10 e 11 a seguir descrevem os resultados obtidos para os modelos

S, SD, R e RD, respectivamente. Estes resultados serão analisados na Seção 5.3, que irá

comparar de maneira consolidada os quatro modelos entre as dimensões coletadas nesta

seção de resultados.
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Tabela 8: Soluções do Modelo S.

Inst. Solução Info. Computacional Nı́v. Objetos

# F.O. GAP (%) Tempo (s) Nós Iter. Qtd. 3 S 4 S 6 S 8 G 9 S

1 Inf. - - - -

2 1,20 0,00 0,05 1 135 6 2

3 Inf. - - - -

4 5,12 0,00 0,37 238 2446 16 8

5 0,60 0,00 0,25 1 2904 6 1

6 4,60 0,00 0,17 165 1676 11 3 2

7 2,28 0,00 0,56 1 8372 11 1 3

8 1,20 0,00 0,97 55 11424 10 1 1

9 1,72 0,00 2,51 1361 50572 11 1 1

10 Inf. - - - -

11 Inf. - - - -

12 5,28 0,00 6,03 2900 108089 18 2 4 1

13 3,48 0,00 2,99 712 42977 13 2 1 1

14 6,68 0,00 0,12 1 3348 15 3 5

15 5,68 0,00 0,15 1 328 27 8 1

16 4,68 0,00 4,95 918 71004 18 5 3

17 3,04 0,00 5,06 108 59333 19 1 2 1

18 3,48 0,00 5,41 45 96087 18 3 3

19 1,72 0,00 65,11 4551 867800 18 1 2

20 1,72 0,00 900,00 235037 3352710 18 1 2

Tabela 9: Soluções do Modelo SD.

Inst. Solução Info. Computacional Nı́v. Objetos

# F.O. GAP (%) Tempo (s) Nós Iter. Qtd. 3 S 4 S 6 S 8 G 9 S

1 Inf. - - - -

2 1,20 0,00 0,09 1 138 6 2

3 Inf. - - - -

4 5,12 0,00 0,43 131 2096 16 8

5 0,60 0,00 1,40 1 5184 5 1

6 4,60 0,00 1,27 1379 12556 11 3 2

7 2,28 0,00 15,27 323 61620 11 1 3

8 1,20 0,00 5,97 316 21011 10 1 1

9 1,72 0,00 10,28 3062 68973 10 1 1

10 Inf. - - - -

11 Inf. - - - -

12 5,28 0,00 58,57 34142 662663 18 2 4 1

13 3,48 0,00 9,66 5726 213447 12 2 1 1

14 6,68 0,00 0,72 1 8651 15 3 5

15 5,68 0,00 1,31 1 1468 27 8 1

16 4,68 0,00 6,53 261 41739 17 5 3

17 3,04 0,00 51,24 83 94606 17 1 2 1

18 3,48 0,00 102,33 1853 457586 18 3 3

19 1,72 0,00 288,40 5134 880224 18 1 2

20 1,72 0,00 900,00 27884 4172551 17 1 2

Fonte: o Autor.
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Tabela 10: Soluções do Modelo R.

Inst. Solução Info. Computacional Nı́v. Objetos

# F.O. GAP (%) Tempo (s) Nós Iter. Qtd. 3 S 4 S 6 S 8 G 9 S

1 8,76 0,00 0,03 1 56 7 2 3 2

2 1,16 0,00 0,15 1 686 3 1

3 2,88 0,00 0,81 242 8913 6 2 1

4 5,12 0,00 8,41 2921 85688 16 8

5 0,60 0,00 4,85 3238 129532 5 1

6 4,04 0,00 2,78 2206 37944 10 1 1 5

7 1,80 0,00 4,85 1 29843 8 3

8 1,16 0,00 12,70 81 69303 5 1 1

9 1,20 0,00 25,21 2700 566018 6 2

10 15,28 0,00 27,28 4323 352783 25 6 6 8

11 5,28 0,00 196,51 7736 1291940 15 2 4 1

12 4,72 0,00 444,42 36548 6845847 16 1 5 1

13 2,92 0,00 379,51 35672 4775956 10 1 2 1

14 6,16 0,00 26,69 201 122915 14 2 6

15 5,72 6,22 900,00 6363 1898533 13 8 1

16 4,12 0,00 64,41 971 259288 13 5 2

17 3,00 0,00 270,65 1 311325 10 5

18 2,96 0,00 106,75 1 284596 14 4 1

19 1,76 27,15 900,00 3025 3203342 12 1 1

20 1,72 31,34 900,00 1651 2140141 14 1 1

Tabela 11: Soluções do Modelo RD.

Inst. Solução Info. Computacional Nı́v. Objetos

# F.O. GAP (%) Tempo (s) Nós Iter. Qtd. 3 S 4 S 6 S 8 G 9 S

1 8,76 0,00 0,07 1 194 7 2 3 2

2 1,16 0,00 0,47 1 1631 3 1

3 2,88 0,00 1,75 442 19210 5 2 1

4 5,12 0,00 8,68 1891 98026 8 8

5 0,60 0,00 9,33 3448 95559 4 1

6 4,04 0,00 11,11 8864 191927 9 1 1 5

7 1,80 0,00 22,21 1 31431 8 3

8 1,16 0,00 33,11 136 72417 5 1 1

9 1,20 0,00 64,20 2837 380850 6 2

10 15,28 0,00 92,97 1770 196649 22 6 6 8

11 5,28 0,00 100,93 4018 709235 13 2 4 1

12 4,72 0,00 114,68 5300 1607788 15 1 5 1

13 2,92 0,00 677,96 14214 4588866 10 1 2 1

14 6,16 0,00 718,61 10099 7675711 14 2 6

15 5,72 1,95 900,00 1778 1271456 10 8 1

16 4,12 7,82 900,00 2773 1342170 12 5 2

17 3,00 9,43 900,00 1186 1036620 10 1 1 2

18 3,04 15,09 900,00 1676 1164744 13 1 4

19 1,76 30,50 900,00 367 1207194 9 1 1

20 1,76 33,77 900,00 78 901905 12 1 1

Fonte: o Autor.
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As tabelas apresentadas anteriormente fornecem algumas informações valiosas de se-

rem observadas. As Tabelas 8 e 9 indicam que 4 das 20 instâncias resultaram infact́ıveis,

pois a rotação das peças não foi permitida; além disso, elas indicam que as 16 instâncias

com resultados fact́ıveis chegaram no valor ótimo, já que o GAP de todas é igual a zero. Ao

observar as Tabelas 10 e 11, nota-se que as 20 instâncias apresentaram resultados fact́ıveis,

destacando a flexibilidade oferecida pelos modelos com a possibilidade de rotação na re-

solução do problema. No entanto, na Tabela 10, 17 das 20 instâncias tiveram a solução

ótima comprovada, enquanto na Tabela 11, apenas 14 das 20 instâncias apresentaram um

GAP igual a zero.

A Figura 33 a seguir apresenta um exemplo da resolução da instância 3 pelo modelo

RD, para ilustrar o que espera-se como resultado dos modelos implementados: a montagem

do Plano de Impressão e Corte de forma visual, indicando o posicionamento dos itens e o

conjunto de objetos que minimiza o custo total da instância. Quando os números estão

dispostos verticalmente (p.e., o item com dimensões 30 × 20 alocado no objeto 9 S), isso

sinaliza que o item foi rotacionado em 90°.

Figura 33: Exemplo de solução da instância 3 pelo modelo RD.

Fonte: o Autor.

Por fim, a Figura 34 a seguir ilustra um exemplo da resolução da instância 5 pela

gráfica (a), e pelos quatro modelos: R (b), RD (c), S (d) e SD (e). É posśıvel notar que

a solução da gráfica optou por utilizar um objeto maior (Formato 4 S), provavelmente

por conta da maior facilidade na montagem do Plano de Impressão e Corte, enquanto

os modelos sempre optaram pelo Formato 8 G, que é a opção dispońıvel que apresenta o

menor custo para resolver essa instância, mas envolve maior complexidade na montagem.
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Figura 34: Comparação das soluções da instância 5.

Fonte: o Autor.

5.3 Análises

Esta seção apresenta as principais análises a partir dos resultados apresentados an-

teriormente na Seção 5.2. Ela está dividida em quatro partes: observação do esforço

computacional das instâncias, comparação dos custos totais, avaliação do critério de de-

sempate e consideração sobre os objetos utilizados.

5.3.1 Esforço Computacional

Esta subseção tem como objetivo apresentar brevemente os três principais indicadores

relacionados ao esforço computacional para rodar as instâncias: o tempo de execução, a

quantidade de nós explorados e o número de iterações realizadas.

A Figura 35 a seguir detalha, para cada modelo e desconsiderando as 4 instâncias com

valor infeasible (as instâncias 1, 3, 10 e 11, já que não retornaram valores fact́ıveis para

os modelos sem possibilidade de rotação) o tempo total de execução em segundos (nas

barras) e a média por instância em segundos (na linha). É posśıvel notar que os modelos

com rotação necessitam de mais tempo para rodar as instâncias, algo que faz sentido

devido a sua maior complexidade. Além disso, os modelos com o critério de desempate

também demonstraram consumir mais tempo para rodar os testes do que os modelos sem

o critério (dentro da sua própria categoria de rotação ou não-rotação dos itens).

A Figura 36 a seguir detalha, para cada modelo e desconsiderando as 4 instâncias

com valor infeasible (pelo mesmo motivo citado anteriormente), a quantidade total de

nós do Branch-and-Bound (B&B) explorados (nas barras) e a média por instância (na
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linha). Apesar dos modelos com rotação serem mais complexos, é posśıvel notar que os

modelos sem rotação exploraram, na média, mais nós do que os modelos com rotação, em

um tempo mais curto (relacionando com a Figura 35 anterior). Também é posśıvel notar

que os modelos sem o critério de desempate percorreram mais nós do que os modelos com

o critério (dentro da sua própria categoria de rotação ou não-rotação dos itens).

Figura 35: Comparação do tempo de execução para os quatro modelos.

Fonte: o Autor.

Figura 36: Comparação da quantidade de nós para os quatro modelos.

Fonte: o Autor.

Por fim, a Figura 37 a seguir detalha, para cada modelo e desconsiderando as 4

instâncias com valor infeasible (pelo mesmo motivo citado anteriormente), a quantidade

total de iterações (nas barras) e a média por instância (na linha). É posśıvel notar que
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os modelos com rotação realizaram uma quantidade consideravelmente maior de iterações

do que os modelos sem rotação, justamente por conta de sua maior complexidade. Além

disso, os modelos com o critério de desempate apresentaram uma quantidade levemente

superior de iterações realizadas em relação aos modelos sem o critério (dentro da sua

própria categoria de rotação ou não-rotação dos itens), o que é razoável dado a sua maior

complexidade.

Figura 37: Comparação da quantidade de iterações para os quatro modelos.

Fonte: o Autor.

5.3.2 Custos Totais

A Tabela 12 a seguir compila os valores de custo total encontrados pela gráfica na

prática (coluna Gráfica) com os valores da função objetivo obtidos através dos procedi-

mentos de otimização dos modelos propostos neste trabalho (colunas com os respectivos

nomes dos 4 modelos). A coluna Modelo seleciona o melhor resultado entre os 2 modelos

com rotação (como o problema é de minimização, seleciona o menor valor), já que estes

são comparáveis à realidade da gráfica, que considera a rotação dos itens na montagem

dos Planos de Impressão e Corte. Note que alguns valores possuem um asterisco (*) ao

seu lado: isso indica que a solução não é comprovadamente ótima. A coluna dif. abs.

representa a diferença em Reais (R$) entre a coluna Gráfica e a coluna Modelo; por fim, a

coluna dif. % representa a mesma diferença, só que percentualmente. Note também que

a solução (ótima) dos modelos com desempate não é melhor do que a solução dos modelos

sem desempate, como esperado segundo a Seção 4.3.
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Tabela 12: Comparação dos custos totais entre a solução da gráfica e as soluções dos
modelos.

Inst. Comparação das Soluções Com Rotação Sem Rotação

# Gráfica Modelo dif. abs. dif. % R RD S SD

1 8,80 8,76 0,04 -0,5% 8,76 8,76 Inf. Inf.

2 1,68 1,16 0,52 -31% 1,16 1,16 1,20 1,20

3 3,48 2,88 0,60 -17% 2,88 2,88 Inf. Inf.

4 6,32 5,12 1,20 -19% 5,12 5,12 5,12 5,12

5 1,16 0,60 0,56 -48% 0,60 0,60 0,60 0,60

6 4,48 4,04 0,44 -10% 4,04 4,04 4,60 4,60

7 4,00 1,80 2,20 -55% 1,80 1,80 2,28 2,28

8 2,28 1,16 1,12 -49% 1,16 1,16 1,20 1,20

9 2,24 1,20 1,04 -46% 1,20 1,20 1,72 1,72

10 17,84 15,28 2,56 -14% 15,28 15,28 Inf. Inf.

11 7,00 5,28 1,72 -25% 5,28 5,28 Inf. Inf.

12 6,84 4,72 2,12 -31% 4,72 4,72 5,28 5,28

13 5,52 2,92 2,60 -47% 2,92 2,92 3,48 3,48

14 9,04 6,16 2,88 -32% 6,16 6,16 6,68 6,68

15 7,84 5,72* 2,12 -27% 5,72* 5,72* 5,68 5,68

16 5,04 4,12 0,92 -18% 4,12 4,12* 4,68 4,68

17 5,28 3,00 2,28 -43% 3,00 3,00* 3,04 3,04

18 4,16 2,96 1,20 -29% 2,96 3,04* 3,48 3,48

19 1,92 1,76* 0,16 -8% 1,76* 1,76* 1,72 1,72

20 2,36 1,72* 0,64 -27% 1,72* 1,76* 1,72 1,72

Fonte: o Autor.

O primeiro tópico a ser avaliado na Tabela 12 são as instâncias 1, 3, 10 e 11 que

apresentam valores infeasible (inviáveis) nos modelos sem rotação. Esse comportamento

se dá por conta das dimensões dos itens presentes nessas instâncias e pela caracteŕıstica

dos modelos sem rotação. Quando um item possui largura maior do que 33 cm e não pode

ser rotacionado, ele não consegue ser alocado em nenhum dos Formatos, que possuem no

máximo 33 cm de largura. Isso ocorre em todas as instâncias citadas. Como exemplo,

vamos citar a instância 1, composta pelos seguintes itens (com dimensões respeitando o

padrão L × A): 40 × 25, 30 × 20, 60 × 30 e 40 × 30. Note que 3 dos 4 tipos de itens

presentes nessa instância extrapolam o limite de 33 cm. Dessa forma, a solução torna-se

infeasible. A Figura 38 a seguir ilustra essa situação.

O segundo tópico a ser avaliado na Tabela 12 é o desempenho dos modelos em com-

paração com as soluções adotadas pela gráfica. O objetivo é comparar, somando os custos

de todas as instâncias, o melhor valor encontrado pelo Gurobi para os modelos com rotação

(coluna Modelo) com as soluções adotadas na prática (coluna Gráfica). A Figura 39 a

seguir ilustra os dois cenários de avaliação: considerando a soma dos custos das instâncias

com valores infeasible (a), já que algum modelo foi capaz de encontrar um resultado para
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a instância; e desconsiderando (b). É posśıvel notar que a utilização da melhor solução

dos modelos apresentou uma economia em relação às soluções adotadas pela gráfica na

faixa dos 25-31%.

Figura 38: Exemplo de instância infeasible.

Fonte: o Autor.

Figura 39: Comparação das soluções encontradas pelo modelo com as soluções adotadas
na prática.

Fonte: o Autor.
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Logo, observando a Figura 39, conclui-se que esse é um forte indicativo de que a

adoção dos modelos de otimização propostos neste trabalho representa uma oportunidade

de redução de custos para a empresa, que atualmente não possui nenhuma ferramenta

para auxiliá-la na montagem dos Planos de Impressão e Corte.

Observando com mais atenção os valores das soluções encontradas por cada modelo,

é posśıvel avaliar que os modelos com rotações se mostram mais econômicos, ou seja,

foram os modelos que mais conseguiram minimizar os custos totais das instâncias. A

Figura 40 a seguir apresenta uma comparação entre a melhor solução obtida pelos mo-

delos com rotação e a melhor solução obtida pelos modelos sem rotação. À esquerda é

posśıvel notar que, somando os custos totais (desconsiderando instâncias infeasible, já que

a comparação de soma total seria injusta), constata-se que os modelos com rotação são

de fato mais econômicos, aproximadamente 10% na média. À direita é posśıvel observar

a soma acumulada dos custos (representada pelos valores no eixo Y) para cada instância

considerada (no eixo X). Percebe-se que, ao final, os modelos com rotações se distanciam

dos modelos sem rotação, ilustrando a economia descrita no gráfico à esquerda.

Figura 40: Comparação entre os modelos sem rotação e com rotação.

Fonte: o Autor.

A instância 14, representada pela Figura 41 a seguir, é um exemplo de como os modelos

com rotação são mais econômicos que os modelos sem rotação. No cenário com rotação

(a), o modelo conseguiu alocar todos os itens em 2 objetos do Formato 4 S e 6 objetos

do Formato 6 S, totalizando R$ 6,16. No cenário sem rotação (b), o modelo conseguiu

alocar os itens em 3 objetos do Formato 4 S e em 5 objetos do Formato 6 S, totalizando

R$ 6,68, representando uma economia de 8% (R$ 0,52).
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Figura 41: Comparação da instância 14 entre os modelos com rotação e sem rotação.

Fonte: o Autor.

Por fim, o último tópico a ser comentado em relação aos valores encontrados pelos

modelos propostos é o de instâncias que atingiram o limite máximo estabelecido pelo

trabalho, de 900 s, e não retornaram uma solução comprovadamente ótima. Estes casos

ocorreram, em sua grande maioria, nos modelos com rotação: instâncias 15, 19 e 20 do

modelo R, e instâncias 15-20 do modelo RD. Nessas instâncias, duas particularidades

ocorreram:

• Os valores encontrados pelos modelos com rotação nas instâncias 18 e 20 são dife-

rentes entre o modelo R e o modelo RD, com o modelo R apresentando uma solução

levemente melhor. Isso ocorreu justamente pois o modelo sem o critério de desem-

pate, dentro da mesma limitação de tempo, apresentou um GAP menor do que o

modelo com o critério, indicando que o modelo R ficou mais próximo da solução

ótima. Em um cenário de soluções ótimas, isso não deve ocorrer, já que o critério

de desempate não influencia no valor da função objetivo, apenas na alocação dos

itens em menos ńıveis.

• Os valores encontrados nas instâncias 15 e 19 são menores nos modelos sem rotação

do que nos modelos com rotação. Isso ocorreu justamente pois os modelos sem

rotação chegaram a uma solução ótima (GAP igual a 0), enquanto os modelos com

rotação não chegaram. Em um cenário de soluções ótimas, isso não deve ocorrer,

já que os modelos sem rotações devem apresentar um resultado igual ou pior aos

modelos com rotação.

A primeira particularidade explica o leve descasamento dos custos totais acumulados
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observado na Figura 40 entre os modelos R e RD ao final das instâncias. Já a segunda

particularidade evidencia que o tempo limite de 900 s nessas instâncias foi um fator

limitante para os modelos com rotação encontrarem uma solução melhor.

5.3.3 Critério de Desempate

Esta subseção tem como objetivo avaliar o impacto do critério de desempate desen-

volvido pelo presente trabalho nas soluções encontradas pelos modelos, através da com-

paração do número de ńıveis abertos. A Tabela 13 a seguir compila a quantidade de ńıveis

abertos pelos quatro modelos, em todas as instâncias. É posśıvel notar que o número de

ńıveis dos modelos com critério de desempate é sempre menor ou igual ao número de

ńıveis encontrado pelos modelos sem o critério.

Tabela 13: Quantidade de ńıveis nos 4 modelos.

Inst. R RD S SD

# Qtd. Qtd. Qtd. Qtd.

1 7 7 - -

2 3 3 6 6

3 6 5 - -

4 16 8 16 16

5 5 4 6 5

6 10 9 11 11

7 8 8 11 11

8 5 5 10 10

9 6 6 11 10

10 25 22 - -

11 15 13 - -

12 16 15 18 18

13 10 10 13 12

14 14 14 15 15

15 13 10 27 27

16 13 12 18 17

17 10 10 19 17

18 14 13 18 18

19 12 9 18 18

20 14 12 18 17

Fonte: o Autor.

A Figura 42 a seguir ilustra de forma comparativa a quantidade total de ńıveis abertos

nos cenários com rotação (a) e sem rotação (b); no segundo cenário, desconsiderou-se as

instâncias com valores infeasible (já que não há solução fact́ıvel). É posśıvel notar que os

modelos com critério de desempate, em ambos cenários, alocam os itens em uma quanti-

dade menor de ńıveis. Nos modelos com rotação os resultados parecem ter mais impacto,
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com uma média de redução de 12% no número de ńıveis (contra apenas 3% de redução

no cenário sem rotação), por conta da flexibilidade que os modelos permitem na alocação

dos itens. Aparentemente, a possibilidade de rotação dos itens favorece o desempate no

número de ńıveis, já que a redução nestes modelos é consideravelmente maior do que nos

modelos sem a possibilidade de rotação. Se desconsiderarmos os valores infeasible em

ambos cenários (para a comparação de soma total dos ńıveis ser justa), chegamos a outra

conclusão: a quantidade de ńıveis nos modelos sem rotação é consideravelmente maior

do que nos modelos com rotação. Olhando somente para os modelos com o critério de

desempate, temos 228 ńıveis no modelo sem rotação contra 148 ńıveis no modelo com

rotação (para chegar a esse valor, basta somar a quantidade de ńıveis na Tabela 13, des-

considerando as instâncias 1, 3, 10 e 11), o que representa uma redução de 35% do número

total de ńıveis.

Figura 42: Comparação da quantidade total de ńıveis abertos nos modelos.

Fonte: o Autor.

A instância 4, representada pela Figura 43 a seguir, é um exemplo de redução do

número de ńıveis causada pelo critério de desempate. Ela apresenta os dois cenários de

resolução pelos modelos com rotação: sem o critério de desempate (a) e com o critério

(b). Os números na parte superior dos objetos representam os ńıveis abertos. É posśıvel

notar que 16 ńıveis foram abertos no primeiro cenário, enquanto apenas 8 foram abertos

no segundo, representando uma redução de 50% no número de ńıveis, o que favorece na

prática o corte. Como visto anteriormente na Subseção 4.3.1, cada corte economizado

se traduz em uma economia média de 30 segundos no tempo de produção, e, portanto,
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o desenvolvimento do critério de desempate proposto neste trabalho mostra-se relevante

para a otimização da operação da gráfica.

Figura 43: Comparação da quantidade de ńıveis abertos na instância 4, com e sem critério
de desempate.

Fonte: o Autor.

5.3.4 Principais Insights e Recomendações Práticas

Esta subseção tem como objetivo discutir os principais insights obtidos após a análise

dos resultados e realizar recomendações práticas para a operação da gráfica a respeito dos

objetos escolhidos na montagem dos Planos de Impressão e Corte.

Primeiramente, a operação atual da gráfica, por realizar a montagem dos Planos de

Impressão e Corte de forma manual, é ineficiente ao alocar os itens nos objetos, já que

os modelos propostos neste trabalho apresentam uma economia média na faixa dos 25-

30%. Logo, a primeira recomendação é que a gráfica implemente o modelo RD em sua

operação. Ele se mostrou o mais adequado entre os modelos desenvolvidos para resolver

as instâncias reais coletadas, já que possibilita a rotação dos itens (resultando em soluções

mais econômicas) e prioriza as soluções com o menor número de prateleiras (resultando

em maior eficiência operacional por conta da redução do número de cortes).

Além da sugestão de adoção do modelo RD, outra recomendação relevante surge a

partir da análise comparativa da quantidade total de objetos utilizados. A Figura 44 a

seguir compila, por Formato, a quantidade total de objetos utilizados pela gráfica (em
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sua solução) e pelos quatro modelos, desconsiderando as instâncias com valores infeasible.

Os modelos S e SD, por apresentarem a mesma distribuição de objetos utilizados, foram

unificados em apenas uma série.

Figura 44: Comparação da quantidade total de objetos utilizados.

Fonte: o Autor.

É posśıvel notar que os modelos proporcionam uma notável redução no número de

objetos, passando de 100 objetos na solução prática da gráfica para 72 no caso do modelo

RD, representando uma redução de aproximadamente 30%. É interessante observar a pre-

ferência da gráfica pelo Formato 9 S, enquanto o modelo RD tende a favorecer os Formatos

8 G e 6 S. Dessa forma, a segunda recomendação é que a gráfica, até a implementação

do modelo RD, considere a utilização dos Formatos 8 G e 6 S durante a montagem dos

Planos de Impressão e Corte, dado que esses formatos apresentam os menores custos por

metro quadrado, conforme evidenciado na Tabela 3.

Para complementar essa recomendação, uma instância interessante de ser observada

é a 17, representada pela Figura 45 a seguir. Ela possui 3 distribuições de objetos,

representadas pelos 3 cenários (a, b e c). Nota-se que em (a) foram utilizados cinco

objetos do Formato 8 G; em (b) foram utilizados um 3 S, um 4 S e dois 8 G; em (c) foram

utilizados um 3 S, dois 4 S e um 8 G. Vale ressaltar que a instância 17 é subótima para o
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modelo RD, como visto na Tabela 12. Na figura, é posśıvel notar que diferentes Formatos

produzem arranjos distintos de alocação dos itens em cada um dos modelos, dependendo

dos objetivos e restrições aos quais estão submetidos (p.e., rotação dos itens e critério de

desempate no número de ńıveis). Por isso, é importante que a gráfica opte pela escolha

dos objetos mais econômicos, e de preferência, em uma alocação que reduza o número

total de ńıveis.

Figura 45: Comparação da quantidade de objetos na instância 17.

Fonte: o Autor.

Por fim, a terceira e última recomendação é que a gráfica mantenha os Formatos 3 S e

4 S (mesmo sendo mais caros em termos de custo por metro quadrado quando comparados

aos Formatos 6 S e 8 G), e reconsidere a priorização pelo Formato 9 S. Os Formatos 3

S e 4 S possibilitam à empresa atender à demanda por itens com dimensões superiores

a 38 cm (algo que os outros Formatos não permitem). Assim, a sugestão é não eliminar

esses formatos devido ao custo elevado, mas utilizá-los apenas em situações apropriadas,

idealmente com o suporte do modelo RD. Quanto ao Formato 9 S, é recomendável que a

empresa reconsidere sua priorização, especialmente se não contar com o suporte do modelo

proposto neste trabalho, já que este formato apresenta o segundo maior custo por metro

quadrado entre as opções dispońıveis. Além disso, sua preferência não parece conferir

uma vantagem competitiva, como, por exemplo, atender a uma demanda espećıfica (já

que ele pode ser alocado dentro dos outros 4 Formatos). Nesse contexto, uma revisão dessa

priorização pode contribuir significativamente para uma redução dos custos na operação

atual.
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6 CONCLUSÕES E PERSPECTIVAS FUTURAS

Este trabalho abordou os diversos desafios enfrentados por uma gráfica na preparação

do Plano de Impressão e Corte das ordens de serviço, especialmente para o caso da empresa

estudada, que atualmente não possui nenhum tipo de tecnologia capaz de auxiliá-la na

montagem desses Planos. O trabalho foi capaz de estabelecer uma relação direta entre o

Problema de Corte Bidimensional Guilhotinado com a realidade da companhia, definindo

o problema como um 2D-R-MBSBPP, ou seja, o caso bidimensional com itens retangulares

do Multiple Bin Size Bin Packing Problem, considerando cortes guilhotinados.

De forma geral, o presente trabalho desenvolveu quatro modelos de otimização que

tem como objetivo minimizar os custos totais de produção dos pedidos, contribuindo com

duas inovações em relação aos modelos originais que foram estendidos: a possibilidade de

rotação dos itens e a criação de um critério de desempate de soluções, visando a eficiência

operacional e a redução do desperd́ıcio de papel. Os modelos foram desenvolvidos e

implementados de forma que a sua execução fornece os Planos de Impressão e Corte

sugeridos de forma visual, indicando a disposição dos arquivos para impressão dentro

das folhas. Por fim, este trabalho também cumpriu o objetivo de comparar os impactos

financeiros entre as soluções adotadas na prática pela gráfica com as soluções obtidas pelos

modelos propostos.

Após os diversos testes computacionais realizados e as análises comparativas, conclui-

se que a adoção do modelo RD parece ser a alternativa mais adequada para apoiar os

processos de impressão e corte. Além de simular a realidade da empresa (permitindo a

rotação dos itens), ele introduz o critério de desempate que minimiza o número de cortes

e a área desperdiçada de papel. Outra caracteŕıstica relevante é o seu desempenho: ele é

capaz de reduzir consideravelmente os custos em relação às soluções adotadas na prática,

e, consequentemente, a quantidade de objetos utilizados pela empresa.

Porém, o modelo apresenta limitações. A principal é o tempo para rodar uma instância

complexa (com múltiplos objetos e itens): nos resultados observados, nota-se que ele não

foi capaz de chegar em uma solução ótima em 6 das 20 instâncias com a restrição de
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900s. O principal fator observado para essa limitação é o fato do modelo, atualmente, não

agrupar objetos idênticos, fazendo com que ele teste todas as combinações de itens nos n

objetos do mesmo tipo. Ou seja, entende-se que a inclusão de desiguldades válidas para

eliminação de simetrias entre os objetos, assim como feito com os itens, poderia ajudar

o modelo desenvolvido a alcançar um tempo de execução menor, e portanto, seria uma

primeira perspectiva futura a ser considerada para aperfeiçoar o trabalho desenvolvido.

Adicionalmente, outras possibilidades interessantes podem ser exploradas acerca dos

modelos desenvolvidos: uma posśıvel extensão dos modelos para considerar múltiplos

peŕıodos (simulando uma operação em que isso ocorra), o desenvolvimento de uma

heuŕıstica rápida e eficiente que consiga ser competitiva com o Gurobi (principalmente no

caso de instâncias mais complexas), e até mesmo a extensão do modelo para considerar

sobras reaproveitáveis (para tratar situações em que isso seja relevante na prática), algo

que não é relevante na empresa estudada atualmente.

Por fim, a última perspectiva futura mapeada é o desenvolvimento de uma interface

gráfica para o arquivo desenvolvido, com o intuito de facilitar a entrada de dados pelo

usuário (já que atualmente é necessário utilizar a própria interface do Jupyter Notebook).
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simetrias. Tese (Doutorado em Ciência da Computação) — Instituto de Matemática e
Estat́ıstica, Universidade de São Paulo, 2012.

ANDRADE, R.; BIRGIN, E. G.; MORABITO, R. Two-stage two-dimensional guillotine
cutting stock problems with usable leftover. International Transactions in Operational
Research, v. 23, n. 1-2, p. 121–145, 2016.

BEASLEY, J. E. An exact two-dimensional non-guillotine cutting tree search procedure.
Operations Research, v. 33, n. 1, p. 49–64, 1985.

BELLUZZO, L.; MORABITO, R. Otimização nos padrões de corte de chapas de fibra de
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